MAIN STREET FEASIBILITY STUDY

March 2012

Bloomington-Normal, Illinois

Main Street (Business US 51)
from Interstate 39 to Interstate 74
Transportation Improvement Feasibility Study
McLean County, Illinois

FINAL DRAFT

GEWALT HAMILTON ASSOCIATES, INC.
ALTA PLANNING + DESIGN
HOUSEAL LAVIGNE ASSOCIATES
TABLE OF CONTENTS

Executive Summary, v

Section 1: Introduction

- Statement of Purpose 1
- Context Sensitive Solutions 2
- Complete Streets 3
- Bicyclist Mobility 3
- Participants 5
- Background 5
- Organization of Report 6

Section 2: Community Outreach and CSS Process

- Interactive Project Website 9
- Radio Advertisement 10
- Community Issues Mapping Tool 11
- Online Questionnaire 14
- Key Person Interviews 16

Section 3: Corridor Analysis

- Corridor Overview 19
 - Main Street Study Limits 19
 - Study Approach and Process 19
 - Corridor Transportation Facilities 21
 - Transit 23
 - Traffic Demand 23

Segment 1: I-39 to I-55

- Location 25
- Objective 25
- Existing Segment Characteristics 25
- Evaluation of Improvement Alternatives 25
- Feasible Improvements 28
- Cross Sections 28
- Aerial Plans 29

Segment 2: I-55 to College Avenue

- Location 33
- Objective 33
- Existing Segment Characteristics 33
- Evaluation of Improvement Alternatives 35
Feasible Improvements 36
Cross Sections 37
Aerial Plans 37

Segment 3: College Avenue to Locust Street
Location 41
Objective 41
Existing Segment Characteristics 41
Evaluation of Improvement Alternatives 43
Feasible Improvements 45
Cross Sections 46
Aerial Plans 48

Segment 4: Locust Street to Oakland Avenue
Location 51
Objective 51
Existing Segment Characteristics 51
Evaluation of Improvement Alternatives 53
Feasible Improvements 55
Cross Sections 56
Aerial Plans 58

Segment 5: Oakland Avenue to I-74
Location 61
Objective 61
Existing Segment Characteristics 61
Evaluation of Improvement Alternatives 63
Feasible Improvements 64
Cross Sections 65
Aerial Plans 66

Section 4: Next Steps
Funding Sources 71
Engineering & Construction 77
Preliminary Cost Estimate 77

Appendix (Separate Report)
LIST OF REPORT EXHIBITS

- **a.** Summary of Feasible Transportation Improvements, vii

1. Context Sensitive Solution Flowchart 8
2. Summary of Key Transportation Recommendations from *Main Street: A Call for Investment* 20
3. Main Street Corridor Segment Map 22
4. Map of Segment 1 - Main Street from I-39 to I-55 26
5. Segment 1 Alternatives Comparison Table 27
6. Cross Section - Main Street from I-39 to I-55 28
7. Aerial Plan – Segment 1 Board 1 31
8. Aerial Plan – Segment 1 Board 2 32
9. Map of Segment 2 - Main Street from I-55 to College 34
10. Segment 2 Alternatives Comparison Table 36
11. Cross Section - Main Street from Raab to College 37
12. Aerial Plan – Segment 2 Board 1 39
13. Aerial Plan – Segment 2 Board 2 40
14. Map of Segment 3 – Main Street & Center Street/Kingsley Street from College to Locust 42
 - Segment 3 Alternatives Comparison Table 45
15. Cross Section - Center Street/Kingsley Street from College to Locust 46
16. Cross Section - Main Street from College to Division 47
17. Cross Section - Main Street from Division to Locust 48
18. Aerial Plan – Segment 3 Board 1 49
19. Aerial Plan – Segment 3 Board 2 50
20. Map of Segment 4 – Main Street & Center Street from Locust to Oakland; East Street & Madison Street from Locust to Olive 52
 - Segment 4 Alternatives Comparison Table 54
21. Cross Section – East Street and Madison Street from Locust to Olive 56
22. Cross Section - Center Street with Two-Way Traffic from Locust to Front 57
23. Aerial Plan – Segment 4 Board 1 60
24. Map of Segment 5 – Main Street & Center Street from Oakland to I-74 62
25. Segment 5 Alternatives Comparison Table 64
26. Cross Section - Main Street from Oakland to R T Dunn 65
27. Cross Section – Main Street from R T Dunn to Brigham School 66
28. Aerial Plan – Segment 5 Board 1 68
29. Aerial Plan – Segment 5 Board 2 69
30. Aerial Plan – Segment 5 Board 3 70
31. Summary Table of Grant Opportunities 76
32. Preliminary Cost Estimate 78
APPENDIX CONTENT

(Separate Report)

A. Meeting Records
 • TAG Meeting Minutes
 • Open House Power Point
B. Open House Corridor Boards
C. Main Street: A Call for Investment Recommendation Matrix
D. Existing Conditions Assessment
 • Functional Classification
 • Sidewalk Facilities Plan
 • Bike Facilities Route Plan
 • Existing Traffic Volumes
E. Technical Memorandums
 • Synchro Traffic Model Memos
 • Bicycle Memorandum
F. Survey Monkey Results
Executive Summary

Overview
The Main Street Transportation Improvement Feasibility Study ("the Feasibility Study") has been a productive year-long collaboration among the public, McLean County Regional Planning Commission, City of Bloomington, Town of Normal, Bloomington-Normal Public Transit System, Illinois Department of Transportation (IDOT), Federal Highway Administration (FHWA), and the planning and design team of Gewalt Hamilton Associates, Inc., Alta Planning + Design, and Houseal Lavigne Associates. The contents of this Feasibility Study outline the analysis and public input process for determining the feasibility of new and previous transportation recommendations for the 9-mile Main Street Corridor through Bloomington-Normal.

Background
Business US 51 - Main Street through Bloomington and Normal - is a principal arterial roadway providing a continuous linkage through both communities and beyond. The multimodal Main Street Corridor is an essential community asset, as recognized by on-going planning efforts of both communities and the continuing participation of the public in determining its character. A joint partnership of local governments and institutions has created a corridor planning process through the formation of the Main Street Commission and the development and adoption of Main Street: A Call for Investment ("the Main Street Plan"). The Main Street Plan presents planning level recommendations for the redevelopment of the corridor, particularly traffic pattern modifications, pedestrian and bicycle mobility, and transit enhancements.

This Feasibility Study is a next step document that determines the feasibility of the transportation system recommendations in the Main Street Plan and in context with other previous plans and studies. It was conducted within the framework of IDOT’s Context Sensitive Solutions (CSS) approach and follows the "Complete Streets" philosophy that urban thoroughfares provide features offering multimodal travel options and mobility, as well as support for the activities of the adjacent land uses. The study allows for application to State and Federal Agencies for implementation of the ultimate improvements.

Study Process
To help guide the Main Street Transportation Improvement Feasibility Study, facilitate open meaningful and positive dialog, keep a balance of values, and adhere to CSS guidelines, a Technical Advisory Group (TAG) was established. The Group acted as a representative advisory committee that met regularly throughout the process.

This study is intended to serve as a next step document to validate whether previous corridor recommendations are feasible and can be built and implemented. The process of the study included collecting new and supplemental data and consolidated previous recommendations set forth in the Main Street Plan. In the original Main Street plan report, there were 172 recommendations for improvements or modifications. Of these, some recommendations were not related to transportation issues, and were not considered in the feasibility study. Many of the
remaining transportation recommendations were consolidated to produce the final list of 26 recommendations considered and evaluated in this study. Using the list of recommendations, earlier public input, as well as new outreach, clear-cut alternative design options were developed and brought back to the public in the form of engineering concept plans.

Based on community feedback, the alternatives were refined further within the context of community support, sound engineering and planning, local jurisdictional policy (Normal, Bloomington, IDOT, McLean County), and practicality of next steps (i.e. Phase I design, costs, funding sources.) Based on a consensus of the TAG, this study identifies several different feasible transportation improvements along the corridor but does not specifically recommended one option over another.

Throughout the entire Main Street Transportation Improvement Feasibility Study, public outreach was prioritized by the TAG in an effort to maximize involvement and input from the community and stakeholders. This is a cornerstone of the CSS process. Many of the outreach methods included traditional face-to-face events, such as meetings, workshops, open houses, and interviews, while other methods were innovative and creative including radio spots and variable message signs, as well as internet based technologies such as the interactive project website, on-line questionnaires, on-line issues mapping, comments board, email input, and more. The net result was an outreach and participation campaign with more than 1,000 people involved in the process.

Statement of Purpose

The TAG established a Statement of Purpose to guide, focus and evaluate alternatives throughout the study process. In summary, the purpose of the Feasibility Study is to engage the public in the study and solicit their ideas to create a next phase document that evaluates the feasibility of the recommendations in *Main Street: A Call for Investment*. These efforts and improvements are ultimately designed to make Main Street a more accessible and efficient multimodal facility. The following key elements of the statement were used as the basis for all TAG review and deliberation as the study progressed:

- Main Street supports all modes of transportation; the movement of autos and trucks, pedestrians, bicycles and transit.
- Accordingly, the corridor and the roadway have multimodal needs and demands that require an integrated approach for all modes, as espoused in a Complete Streets environment.
- The corridor must be designed to accommodate both current and future transportation and land uses. This includes a variety of businesses, institutional uses, and housing.

Feasible Transportation Improvements

With the help of the guiding elements in the Statement of Purpose and community support, the TAG determined transportation improvements for the Main Street corridor that are feasible with respect to best practices and standards, sound engineering and planning, and practical implementation. All around, the improvements are designed to make Main Street a more accessible and efficient multimodal facility. As the culmination of the study, the following table in *Exhibit i* summarizes viable transportation improvements for each of the five segments of the corridor, listed from north to south.
Exhibit a: Summary of Feasible Transportation Improvements

<table>
<thead>
<tr>
<th>Segment 1</th>
<th>Description of Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-39 to I-55</td>
<td>Landscaped median</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Segment 2</th>
<th>Description of Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-55 to College</td>
<td>Landscaped median</td>
</tr>
</tbody>
</table>
| Raab to College | Narrow travel lanes to 11’
| | Stripe bike lanes OR widen parkway
| | Widen sidewalk
| | Reduce & consolidate driveways |

<table>
<thead>
<tr>
<th>Segment 3</th>
<th>Description of Improvement</th>
</tr>
</thead>
</table>
| Main/College | Traffic signal timing modifications
| | Increase southbound left-turn lane
| Main/McKinley OR Summit | New traffic signal
| Main (College-Division) | Narrow travel lanes to 11’
| | Stripe bike lanes OR widen parkway
| | Widen sidewalk
| | Curb & gutter reconstruction
| Main (Division-Locust) | Remove one northbound travel lane, narrow travel lanes to 11’, retain parking
| | Stripe buffered bike lane OR widen parkway/sidewalk
| | Curb & gutter reconstruction
| Kingsley/Center (College-Locust) | Narrow travel lanes to 11’
| | Stripe bike lane OR widen parkway
| | Widen sidewalk
| | Curb & gutter reconstruction
| | Fill in sidewalk gaps |

<table>
<thead>
<tr>
<th>Segment 4</th>
<th>Description of Improvement</th>
</tr>
</thead>
</table>
| Locust Street | Convert to two-way operations Lee-Main to create truck route (2 eastbound lanes & 1 westbound lane)
| | Place IL 9/US 150 designation along Locust instead of Lee
| | Acquire ROW NWQ Locust/Center & turn lane improvements
| Center & Main (Locust-Front) | Convert to two-way traffic operations
| | Roadway extension to intersect Madison & East
| | Traffic signal modifications
| | Curb bump-outs, extend streetscape to Center
| Madison & East (Locust-Olive) | Reduce to 3 lanes, narrow travel lanes to 11’ travel lanes
| | Stripe buffered bike lane OR widen parkway/sidewalk |

<table>
<thead>
<tr>
<th>Segment 5</th>
<th>Description of Improvement</th>
</tr>
</thead>
</table>
| Main (Oakland-RT Dunn) | Maintain 3 NB lanes & narrow travel lanes to 11’
| | Stripe bike lane OR widen parkway/sidewalk
| Main (Lafayette-Brigham School) | Construct 10’ off-street path
| | Reduce & consolidate driveways
| Main (RT Dunn-Brigham School) | Landscaped median |
Section 1: Introduction

The Main Street Transportation Improvement Feasibility Study (“the Feasibility Study”) has been a productive year-long collaboration among the McLean County Regional Planning Commission, City of Bloomington, Town of Normal, Bloomington-Normal Public Transit System, Illinois Department of Transportation (IDOT), Federal Highway Administration (FHWA), and the planning and design team of Gewalt Hamilton Associates, Inc., Alta Planning + Design, and Houseal Lavigne Associates.

The following report presents the feasibility of previous transportation recommendations contained in the study Main Street: A Call for Investment for the 9-mile Main Street Corridor through Bloomington-Normal. It serves as a next step document to validate whether previous corridor recommendations can be built and implemented. Evaluation of the recommendations was performed from a perspective of practical implementation, within best practices and standards, as well as sound engineering and planning. It was conducted within the framework of IDOT’s Context Sensitive Solutions (CSS) approach and follows the philosophy that urban thoroughfares provide features offering multimodal travel options and mobility, as well as support for the activities of the adjacent land uses. Walkability and bicycle access are a key focus of previous recommendations.

The following report summarizes the history, study process, alternatives analysis, and a determination of all alternatives that successfully accomplish the study’s purpose, which is described in detail in the Statement of Purpose.

STATEMENT OF PURPOSE

The study, evaluation, and recommendations of Business US 51 – Main Street through Bloomington and Normal – has been undertaken in recognition that this key arterial roadway provides multimodal transportation that is supportive of adjacent land uses, people, and supplies for a corridor extending far beyond the roadway itself. The project includes much more than the roadway alone. It encompasses an area that includes numerous other intersecting or parallel streets and neighborhoods. Its value as a community asset has been recognized through the initial planning efforts of the communities and the continuing participation of the public through a robust Context Sensitive Solutions process.

Building upon previous studies, particularly the recently completed Main Street: A Call for Investment, the purpose of the Feasibility Study is to engage the public in the plan and solicit their ideas to create a next phase document that evaluates the feasibility of the recommendations in the previous study which developed a comprehensive multimodal plan based on good design and planning principles, as well as community needs and input. All of this will be done within the context and recognition that:
Main Street supports all modes of transportation; the movement of autos and trucks, pedestrians, bicycles and transit.

Accordingly, the corridor and the roadway have multimodal needs and demands that require an integrated approach for all modes, as espoused in a Complete Streets environment.

The corridor must be designed to accommodate both current and future transportation and land uses. This includes a variety of businesses, institutional uses, and housing.

These efforts and improvements are ultimately designed to make Main Street a more accessible and efficient multimodal facility. Accordingly it will be able to support business growth and provide a template for sustainable transportation practices throughout the State. The resulting study will provide necessary engineering and planning for the next phase, and allow for application to State and Federal Agencies for funding and implementation of the ultimate improvements.

CONTEXT SENSITIVE SOLUTIONS

In keeping with the principles of past planning, this study is consistent with the State and Federal policy promoting a comprehensive approach that is sensitive to community surroundings. As mentioned in the Statement of Purpose, this study incorporates IDOT’s Context Sensitive Solutions (CSS) design philosophy. The CSS planning process is a relatively new approach employed by IDOT which focuses roadway design on maintaining community character, while still providing a safe, well-designed, efficient roadway plan. It requires extensive public outreach and input to help shape the community’s vision and reach reasonable solutions. Section 2 of this report is dedicated to an in-depth description of the CSS process followed in the steps of this study. IDOT’s definition of CSS follows:

Context Sensitive Solutions or CSS is an interdisciplinary approach that seeks effective, multimodal transportation solutions by working with stakeholders to develop, build and maintain cost-effective transportation facilities which fit into and reflect the project’s surroundings – its “context.” Through early, frequent, and meaningful communication with stakeholders, and a flexible and creative approach to design, the resulting projects should improve safety and mobility for the traveling public, while seeking to preserve and enhance the scenic, economic, historic, and natural qualities of the settings through which they pass.

“Context” as it applies to transportation projects can be defined as “all elements related to the people and place where a project is located.” This includes both visible elements such as environmental or historic resources and invisible elements such as community values, traditions, and expectations. While transportation agencies have experience dealing with the former, the latter “intangibles” can sometimes be more challenging to identify and work with for transportation professionals.

Context is identified through early and continuous collaboration with stakeholders. Stakeholders for a project include any person or organization which has a direct stake in the project being considered. This can be anything from a small group of residents and businesses affected by the redesign of a rural intersection to thousands of individuals when a major roadway or transit extension is being built. Stakeholders can include residents and landowners near a project, advocates for policy, community and historic interests, elected officials, government agencies, and many others. Stakeholders should be involved from the early stages of the project,
especially before major decisions are made. The form and frequency of the contacts with stakeholders will be determined by the individual transportation issues involved. It is important to have a systematic method for reaching out so that representatives of all possible individual stakeholders can be organized and can communicate clearly with the transportation agency.

CSS seeks to ensure that stakeholders’ views are carefully considered in the decision-making process. The information gained from partnering with stakeholders is then used by the transportation agency to develop an informed solution to the transportation issue and to plan and design transportation projects that “fit” into their surroundings.

COMPLETE STREETS

Also in keeping with the principles of past planning, this report is consistent with State and Federal policy fostering a multimodal sustainable transportation network designed to safely accommodate pedestrians, bicyclists, motorists, and public transportation options for all users, ages, and abilities. A key component of the Statement of Purpose is the “complete street” design approach, which refers to the integration of features that safely accommodate all users, including various modes of transportation such as automobile drivers, bus riders, bicyclists, and pedestrians of varying ages and capabilities. These user types represent residents, employees, commuters, shoppers and business patrons, students, and others. The alternatives evaluated in this study that best meet the Statement of Purposes are those that are consistent with “complete street” design objectives, safely incorporating multiple modes of transportation, fostering bus usage, and generally facilitating walking and biking along the corridor.

In 2010, IDOT issued revisions to IDOT’s Bureau of Design and Environment (BDE) Manual intended to implement the State’s 2007 “Complete Streets” legislation. The revised BDE sets standards for accommodating walking and cycling in urbanized areas for IDOT highways. The chapters that were modified are Chapter 5: Local Agency Agreements (deals with cost-share arrangements) and Chapter 17: Bicycle and Pedestrian Accommodation (deals with warrants and facility design.)

BICYCLIST MOBILITY

Bicycle mobility is an important factor in designing a “complete street”, thus a key focus of the Statement of Purpose and previous recommendations. When identifying potential bicycle network improvement options in this study, it was important to understand that the system should meet the needs of many bicyclist types since preferences of bicyclists vary depending on the cyclist’s skill level and the type of trip a rider wishes to take.

Bicycle planners have conducted numerous studies to help develop profiles of the various bicycle user types and their respective needs. The research, which categorizes bicyclist user types as Four Types of Cyclists, is anticipated to be integrated into the forthcoming update of the American Association of State Highway and Transportation Officials’ (AASHTO) Guide for the Development of Bicycle Facilities. This document is one of the most commonly used reference materials for communities seeking to improve their bicycling environments.
Less than 1 percent of Americans comprise a group of bicyclists who are ‘Strong & Fearless’. These bicyclists typically ride anywhere on any roadway regardless of roadway conditions or weather. These bicyclists can ride faster than other user types, prefer direct routes and will typically choose roadway connections – even if shared with vehicles – over separate bicycle facilities such as bicycle paths.

Another 7 percent fall under the category of ‘Enthused and Confident’ bicyclists who are confident and mostly comfortable riding on all types of bicycle facilities but will usually prefer low traffic streets or multi-use pathways when available. These bicyclists may deviate from a more direct route in favor of a preferred facility type. This group includes all kinds of bicyclists including commuters, recreationalists, racers, and utilitarian bicyclists.

The remainder of the American population does not currently ride a bicycle regularly. Sixty (60) percent of the population can be categorized as ‘Interested but Concerned’ and represents bicyclists who typically only ride a bicycle on low traffic streets or bicycle paths under favorable conditions and weather. These infrequent or potential bicyclists perceive significant barriers towards increased use of bicycling with regards to traffic and safety. These bicyclists may become more regular riders with encouragement, education, experience and engineering – more frequent and generous facilities for bicyclists.

The remaining 32 percent of Americans fall under the category of “No Way No How”. Some are physically unable to ride a bicycle. However, the majority of this group perceives severe safety issues with riding in traffic. Some people in this group may eventually give bicycling a second look and may progress to one of the user types above. A significant portion of these people will never ride a bicycle under any circumstances.

One group of people missing from these categories are those who bike nearly every day by necessity because they can’t afford a car, are non-drivers (for multiple reasons) or live in areas not well served with transit.

The Four Types of Cyclists model supports development of a diverse bikeway network serving both the enthused and confident and interested but concerned groups as the best way to attract new people to bicycling for transportation, and to help encourage existing bicyclists to ride more often.
PARTICIPANTS
To help guide the Main Street Feasibility Study, facilitate open meaningful and positive dialog, keep a balance of values, and adhere to CSS guidelines, a Technical Advisor Group (TAG) was established. TAG meeting minutes are included in Appendix A.

TAG Committee Members

McLean County Regional Planning:
Paul Russell - Executive Director
Jennifer Sicks - Land Use/Transportation Planner
Bill Jackson, GIS Coordinator

City of Bloomington:
Mark Huber - Director, Planning and Code Enforcement
Jim Karch - Director of Public Works
Kevin Kothe - City Engineer
Mark Woolard - City Planner

FHWA:
JD Stevenson - Planning Environment and ROW Team Leader

Town of Normal:
Gene Brown - City Engineer
Robin Weaver - Director of Public Works
Mercy Davison - Town Planner

Bloomington-Normal Public Transit System:
Andrew Johnson – General Manager

Illinois Department of Transportation:
Dennis Markwell - Program Development Engineer, District 5
Tom Kelso - Office of Planning and Programming
Tom Caldwell - Office of Planning and Programming

BACKGROUND

A joint partnership of local governments and institutions has created an ongoing corridor planning process through the formation of the Main Street Commission and the development and adoption of Main Street: A Call for Investment (“Main Street Plan”). The Main Street Plan, completed in November 2007, presents recommendations for the redevelopment of the corridor, including traffic pattern modification, pedestrian and bicycle mobility, transit enhancements, as well as zoning and land use improvements. A tremendous amount of time, effort, money, and public input has already been put into corridor recommendations. Accordingly, these recommendations need validation in terms of whether or not they can be built and implemented.

In that interest, this study is a next step document that determines the feasibility of the transportation system recommendations as proposed in the Main Street Plan and in context with other previous plans and studies. It builds on that previous commitment of resources, and maintains the momentum to address, prioritize, and correct key deficiencies within the corridor. This study is intended to be used as a basis for making implementation decisions.
ORGANIZATION OF REPORT

This report is divided into four sections:

Section 1: Introduction provides background information about how the study came about; its purpose, a description of the study process and its participants, and the organization of the report.

Section 2: Community Outreach and the CSS Process summarizes the public input process in Bloomington and Normal during the study including issue identification by the community, online questionnaires, interviews, TAG committee meetings, public open houses and other efforts to promote local involvement in the study process. It explains the CSS approach used throughout the study.

Section 3: Corridor Analysis presents an overview and detailed analysis of existing segment characteristics and alternative design improvements. This section is organized in the following way (segments from north to south):

- Corridor Overview provides a description of the study limits, existing corridor characteristics and a summary of feasible design improvements.
- Segment 1: I-39 to I-55
- Segment 2: I-55 to College Avenue
- Segment 3: College Avenue to Locust Street
- Segment 4: Locust Street to Oakland Avenue
- Segment 5: Oakland Avenue to I-74

For each segment, the following analyses are provided:

- Location
- Objective
- Existing Segment Characteristics
- Evaluation of Improvement Alternatives
- Feasible Improvements
- Cross Sections
- Aerial Plans

Section 4: Next Steps presents an overview of the next steps involved in implementing the Plan including preliminary costs, funding sources, and an overview of engineering and construction.

The appendices contain all other exhibits and figures that are not included in the body of the report, as well as supplemental technical memoranda, survey results, background data, meeting minutes, and public comment cards.
Section 2: Community Outreach and the Context Sensitive Solution (CSS) Process

Throughout the entire Main Street Transportation Improvement Feasibility Study, community outreach was prioritized by the Consultant Team in an effort to maximize involvement and input from community and stakeholders. This is a cornerstone of the Context Sensitive Solution (CSS) process. A flow chart of the report process in relation to CSS is shown in Exhibit 1 on the next page.

CSS mandates extensive public outreach and input to help shape the community vision and reach reasonable solutions. Creative and engaging methods such as radio spots, variable message signs along the Main Street study area, and an interactive project website with a host of specifically designed outreach tools was made available and promoted to the public, encouraging attendance and input. In addition, committee meetings, meetings with local municipal staff, interviews with stakeholders and institutional representatives, public open houses, and more were conducted in an effort to cast as wide a net as possible with regard to obtaining feedback from the public. Many of our outreach methods included traditional face-to-face events, such as meetings, workshops, open houses, interviews, and more, while other methods included internet based technologies such as the interactive project website, on-line questionnaires, on-line issues mapping, comments board, email input, and more. The net result was an outreach and participation campaign with more than 1,000 people involved in the process.

The following pages of this section provide an overview of the community outreach efforts conducted throughout the planning process. Outreach components included the following meetings and deliverables:

CSS / Community Outreach Components
- Project Kick-Off and Technical Advisory Group (TAG) Meetings
 - January 28, 2011,
 - April 1, 2011,
 - April 29, 2011,
 - June 3, 2011,
 - July 29, 2011,
 - August 6, 2011,
 - December 2, 2011,
 - January 13, 2012
- Interactive Project Website and Social Networking
- Community Issues Mapping Tool
- Online Questionnaire
 - Email feedback
 - Press Releases, ISU Newsletters, and News Articles
 - Open Houses – June 30, 2011 and September 29, 2011
 - Radio Advertising and Message Board
 - Key Person Interviews
 - City/Town Council Presentations (April 2012)
Exhibit 1
Context Sensitive Solution Process
INTERACTIVE PROJECT WEBSITE

The interactive project website was an incredibly effective outreach tool for the Main Street Transportation Improvement Feasibility Study. More than 1,000 different users visited the site. A majority of those who visited the project website completed the online questionnaire, created their own issues map, or provided email comments back to the Consultant Team. Below are images of the project website, including the home page and the mapping tool.
RADIO ADVERTISEMENT

A radio advertisement was effectively used to blanket the community with information about the project, the website, and the public open houses. The script and play times of the radio ad are presented below. Several attendees at the open house mentioned they were made aware of the event as a result of hearing the radio ad.

Script for September 29, 2011 Open House

“If your daily travels in the Twin Cities include Main Street, your input is important! Come to the Main Street Feasibility Open House on Thursday, September Twenty-Ninth at the I.S.U. Alumni Center. The study team wants to hear from you about traffic, transit, parking, biking and walkability all along Main Street. Help plan Main Street – attend-the open house on Thursday, September Twenty-Ninth from five ‘til seven-thirty p.m. at the I.S.U. Alumni Center, Eleven-OH-One North Main Street in Normal. Or complete our online survey at www.dot.mcpplan.dot.org.”

Sample Play Times:

<table>
<thead>
<tr>
<th>WJBC-AM</th>
<th>WJBC-FM</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:57am</td>
<td>7:27am</td>
</tr>
<tr>
<td>7:44am</td>
<td>8:43am</td>
</tr>
<tr>
<td>10:57am</td>
<td>9:43am</td>
</tr>
<tr>
<td>3:27pm</td>
<td>11:57am</td>
</tr>
<tr>
<td>4:43pm</td>
<td>2:57pm</td>
</tr>
<tr>
<td>5:43pm</td>
<td></td>
</tr>
</tbody>
</table>

OPEN HOUSES

Two community open houses were conducted. One open house was conducted on June 30, 2011 at the Bloomington Center for the Performing Arts and the other was held at the Alumni Center on October 29, 2011. The open houses gave the community an opportunity to discuss the planning process and provide feedback regarding their concerns, issues, and aspirations for the corridor. Approximately 30 individuals attended the first open house and approximately 70 people attended the second open house. At each open house, attendees were able to talk to consultants, view presentations and aerial poster boards of the study area with preliminary engineering considerations (shown in Appendix A and B), and fill out and submit comment cards.
The open houses were very successful at creating a forum to address issues, answer questions, and present ideas both to a larger audience as well as one-on-one with specific attendees as they approached the consultant team with a particular issue, question, or concern. Index card questionnaires, PowerPoint presentations, presentation boards of the study area (including aerial photographs with engineering drawing overlays), live website and community mapper “walk-through” demonstrations, surveys, conditions summary reports and mission statements, and more were available to the public and were key components of both open houses.

COMMUNITY ISSUES MAPPING TOOL

The interactive project website provided the Bloomington-Normal community with an on-line Community Issues Mapping Tool. The Mapping Tool allowed residents to identify, map and comment on valued community assets and areas of concern within the community.

Using a legend with five “points of interest” categories, participants were able to identify various specific locations within the Main Street corridor that they viewed as issues or barriers to mobility and connectivity. The “points of interest” provided included:

Auto/Traffic Issues
Locations such as driveways and intersections that are difficult to turn at or problem areas that impact the traffic flow.

Bike Issues
Locations to be enhanced with signage, pavement markings or dedicated bike lanes to make cycling safer or to improve navigation for cyclists.

Pedestrian Issues
Locations where pedestrian enhancements could be made such as improved sidewalks, more visible crosswalks, enhanced landscaping, or additional streetscape.

Transit Issues
Locations where transit stops could be added or improved to improve the usability of the Bloomington Normal’s transit system.

Parking Issues
Locations where parking is needed or should be removed to improve the appearance and safety of Main Street.

THE MAPPING TOOL SHOWS 20 LOCATIONS IDENTIFIED AS HAVING AUTO/TRAFFIC ISSUES.
Auto/Traffic Issues (20 “Points of Interest”)

While a range of traffic related issues were identified throughout the corridor, the majority related to the need for improvements to traffic controls along cross streets turning onto Main Street. As potential solutions, community members suggested longer left-turn lights and longer turn lanes (Raab Rd., Gregory St., College Ave.) and addition of turn lanes where they don’t yet exist (Hovey Ave.). Congestion along Main Street was also cited as an issue, but the majority of comments related to turning movements and the need for better coordinated traffic signal timing. It was also indicated that additional traffic controls may be needed to alleviate congestion on cross streets related to ISU events and Heartland College.

Bike Issues (11 Points)

The majority of bike related issues were with regard to difficult/problematic crossings along Main Street and cross streets due to high traffic volumes and speeds. For example, Raab Road was identified as a particularly difficult street to cross by several participants. Biking on Main Street was also reported to be hazardous. Other comments cited the general need for additional bike parking, especially at destinations such as Amtrak and the post office. Community members also indicated a desire to improving connections between Uptown and the Constitution Trail.

Pedestrian Issues (17 Points)

Community members indicated difficulty crossing at several intersections along the corridor. Raab Road, Fairview Park Road and the Constitution Trail crossing at Raab Road were of particular concern. There were also several comments made regarding pedestrian crossings within downtown Bloomington which cited the related issues of pedestrian signal timing and problematic roadway width. Community members also indicated a desire for trail connections to local attractions such as Starplex Cinemas.
Transit Issues (15 Points)

Transit comments related to two general issues: bus shelter quality and bus traffic along Main Street. It was indicated that buses with routes along cross streets (Raab Rd.) may have difficulty traversing multiple lanes of traffic as they travel from a bus stop on the right shoulder of Main Street to a left turn lane. The use of technology such as signal priority and real-time bus tracking were also suggested improvements to bus service along Main Street.

Several comments identified the quality and location of bus shelters as an issue. Community members indicated that the design of newer bus shelters does not shield potential riders from the elements and have an “unattractive appearance” that may be limiting ridership. Poorly demarcated bus stops cause confusion among potential riders.

Parking Issues (2 Points)

Some parking areas were identified as an “eyesore”. While no details were provided, preliminary observations indicate that these comments related to poorly maintained surface lots and a general lack of screening and landscape in some areas.
ONLINE QUESTIONNAIRE

The online questionnaire received a total of 705 responses (663 of which completed the entire survey) between May and November of 2011. Similar to the community issues mapping tool, the questionnaire was broken up into five sections: Automobiles, Bicycling, Pedestrians, Transit and Parking. The results of the on-line questionnaires are included in Appendix F.

The following summarizes responses to each section of the questionnaire.

Automobiles

- Approximately 92% of respondents reported that a vehicle was the primary mode of transportation within the Main Street corridor.
- College Ave. and Hovey Ave./Beaufort St. were reported to be the most difficult intersections to navigate when travelling by car.
- Regardless of the time of day, approximately two-thirds of respondents indicate that speed limits were appropriate within the non-downtown portions of the corridor. The majority of others indicated that speed limits may be too slow. Within Downtown Bloomington and the corridor’s various institutional areas (e.g. campus areas), nearly three-quarters of respondents indicated that speed limits were appropriate.
- Nearly 71% of respondents indicated that they felt traffic signals were working well and were timed correctly. Another 25% indicated that signals were not working well.

Bicycling

- Two-thirds of respondents never bike within the Main Street corridor while another 20% reported biking occasionally. Slightly more than 13% reported biking on a weekly or monthly basis.
- The most cited obstacles to biking along the corridor included a lack of protected bike lanes (41%) and ‘Other’ (36%). Within the ‘Other’ category, many respondents indicated a preference to ride along local streets and the Constitution Trail. Another significant group of respondents indicated the combination of narrow roadway width, unprotected lanes and high traffic speeds as a cumulative obstacle to riding a bike along Main Street.
- Nearly two-thirds of respondents identified dedicated bike lanes as the improvement that would have the largest impact on bike ridership within the corridor. Another 23% responded with ‘Other’ stating a preference for improvements to other bike routes (e.g. Constitution Trail) over improvements along Main Street that some stated might promote bicycling, but constrain traffic flow.
- More than half (55%) of respondents indicated that more bike racks are needed throughout the corridor near retail areas, college buildings and campus facilities, and the downtown area.
Pedestrians

- Raab Road was identified as the most difficult intersection to cross (33%) within the corridor. Downtown Bloomington Street (15%), College Avenue (11%) and Hovey Avenue (11%) were also frequently cited by respondents as difficult to cross.
- Nearly 40% of respondents occasionally walk within the Main Street corridor while another 22% reported never walking within the corridor. Slightly more than 17% reported walking along the corridor on a weekly basis and another 11% on a monthly basis.
- Nearly every single portion of the Main Street corridor was highlighted as in need of sidewalk improvements. The proportion of respondents ranged from 23% (Raab Road to College Avenue) to 12% (Olive Street to Lincoln Street).
- The walking destinations most frequently visited by respondents included Downtown Bloomington (35%), Illinois State University Campus (22%), and Uptown Normal (19%).

Transit

- Nearly 83% of respondents reported never riding the bus within the Main Street corridor while another 13% reported using the bus occasionally.
- Respondents indicated that more real-time bus information (19%), increases in service (17%) and improved shelter (16%) would be the most beneficial improvements to transit service. Another 29% responded ‘Other’. Those selecting ‘Other’ either requested more frequent and reliable service or indicated that they did not know how to improve things given their lack of ridership or requested.
- The most often cited positive statements regarding bus service along Main Street included timely service (35%), courteous drivers (31%), and clean buses (22%). Bus service was most critiqued for a lack of shelters (34%).

Parking

- While Washington Street in Downtown Bloomington was cited as the most difficult along which to parallel park, Main (21%) and Center Streets (22%) were selected often.
- Nearly half of all respondents (44%) indicated an unwillingness to pay for on-street parking while another 38% indicated that it would depend on the price.
- More than 70% of respondents indicated that the parking lots in Downtown Bloomington are helpful. Another 20% do not use them.
- Price, security and lighting, location, and proximity to destination all received equal treatment among respondents when considering where to park. Each of the four factors was given an average rating of near 4 (out of 5).
KEY PERSON INTERVIEWS

Key person interviews were conducted via telephone to obtain the unique perspective and insights of those representing a diverse point of view including advocates, property owners, and residents. Ten individuals were contacted during the week of September 16th and asked a series of questions to gauge priorities for the corridor and improvements for pedestrians, bicyclists and vehicles. While interviews were confidential, a brief overview of responses has been provided here.

1. Biggest issues facing the corridor?
 - High traffic counts – Ability to attract national retailers/restaurants
 - Narrow right-of-way – Limited room for widening to accommodate multiple modes of transportation
 - Parking – Accessibility versus appearance
 - ISU Campus – Recent investments and new facilities; Bike/pedestrian traffic generators create potential for conflict
 - Image and Appearance – Limited signage to corridor assets (e.g. Uptown Normal, Downtown Bloomington, ISU campus, amenities); Need to improve curb appeal of the corridor (streetscape and wayfinding) and its businesses (facades); Renovated football stadium is a positive example to follow.
 - Pedestrian / Bike Safety – Marked crossings need additional safety features; Explore potential for pedestrian bridges or underpasses; Sidewalk maintenance and improved connectivity (also within parking lots); Explore potential of bike lanes
 - Parking – The corridor is an underparked, confined area; Proximity to campus increases demand

2. How to improve pedestrian mobility and safety?
 - Improve aesthetics by burying utility lines, install streetscaping to create a “college town” atmosphere
 - Widen sidewalks to handle pedestrian traffic, especially surrounding and between activity nodes such as the ISU campus area, Hospital, IWU, and Downtown Bloomington
 - Leverage incentives such as TIF and encourage desirable development such as the University housing which has sparked interest from housing developers
 - Retain the corridor’s healthy retail environment
 - Lengthen pedestrian crossing times, maintain sidewalks and curb cuts, and address accessibility issues throughout the corridor

3. How to improve bicycle mobility and safety?
 - New student housing and other developments surrounding the corridor will likely generate increased demand for bus service and bicycle facilities
 - Support bicycle travel along Main Street if it is safe and does not constrain traffic
 - Maintain and improve bicycle network outside of the corridor (Constitution Trail); Market Main Street as a route for destination-minded biking, not pleasure riding
• Improve crosswalk markings; Install caution signs/lights for crossing pedestrians
• Consider one-way bicycle lanes to the south of College Avenue

4. **Most important project to undertake along corridor?**

• Install countdown lights and crossing signals triggered by bikes/pedestrians
• Provide additional accessible parking as well as accessible bus loading areas throughout the corridor
• Widen sidewalks in high traffic areas such as near the football stadium
• Develop vacant properties and improve appearance of the corridor
• Identify additional opportunities for crossings such as the underpass
This page intentionally left blank.
CORRIDOR OVERVIEW

Main Street Study Limits
The study area is defined as the Business US 51 right-of-way from its intersection with Interstate 39 (I-39) north of Normal to Interstate 74 (I-74) south of Bloomington and related uses and facilities approximately ¼-mile east and west in order to evaluate relevant nearby features such as major institutions or trail extension. It is an approximately 9-mile corridor that is generally referred to as the Main Street Corridor (“the corridor”).

Study Approach & Process
As stated, the purpose of this report is to serve as a next step document to validate whether previous corridor recommendations can be built and implemented. The approach was to collect new and supplemental data, sort and distil previous recommendations set forth in the Main Street Plan, and using earlier public input and new outreach, come up with clear-cut alternative design options to reintroduce to the public in the form of engineering concept plans. Based on this public input, the alternatives were refined, further evaluated and compared to the Statement of Purpose objectives. Feasible design features were identified. The following further describes the steps taken in the project approach.

Step 1: Review area transportation plans
To provide an overall basis for the corridor analysis, Main Street: A Call for Investment was reviewed as well as other previous transportation plans including
- City of Bloomington Comprehensive Plan
- Town of Normal Comprehensive Plan
- McLean County Regional Comprehensive Plan
- McLean County Regional Greenways Plan
- Town of Normal Bicycle and Pedestrian Plan
- Speed data from the Illinois Department of Transportation

From the original Main Street Plan, the transportation related corridor improvements or modifications were consolidated to produce a list of twenty-six recommendations considered and evaluated in this study. The list is shown in Exhibit 2 on the next page and is used to understand corridor goals, objectives, visions, and desirable design elements.
Exhibit 2: Summary of Key Transportation Recommendations from *Main Street: A Call for Investment*

<table>
<thead>
<tr>
<th>Category</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Roadway Landsaped Median: (S of Lafayette & N of College)</td>
</tr>
<tr>
<td>2</td>
<td>Roadway Remove One travel Lane in NB Couplet to provide Bike Lane/ Parking or other amenities</td>
</tr>
<tr>
<td>3</td>
<td>Roadway Convert Madison, Center, Main, East and Locust to two Way Operation</td>
</tr>
<tr>
<td>4</td>
<td>Roadway Narrow Travel Lanes to 11'</td>
</tr>
<tr>
<td>5</td>
<td>Roadway Review Posted Speed Limits</td>
</tr>
<tr>
<td>6</td>
<td>Roadway Utilize Access Management - Reduce & Consolidate Driveways, Share Driveways, Reduce curb Cuts</td>
</tr>
<tr>
<td>7</td>
<td>Roadway Improve Couplet - Reduce Number of Travel Lanes from 4 to 3.</td>
</tr>
<tr>
<td>8</td>
<td>Roadway Remove Turn Lanes Along One-Way Couplet through Downtown Bloomington</td>
</tr>
<tr>
<td>9</td>
<td>Roadway Create On-street Parking and Extend Curbs (Bump-Outs) at Intersections.</td>
</tr>
<tr>
<td>10</td>
<td>Parking Add On Street Parking (College to Locust)</td>
</tr>
<tr>
<td>11</td>
<td>Parking Revise Downward the Parking Requirements in the Zoning Ordinance</td>
</tr>
<tr>
<td>12</td>
<td>Parking Discourage investment in expanding parking capacity, except for hotels and critical healthcare</td>
</tr>
<tr>
<td>13</td>
<td>Parking Share Bro-Menn (Advocate) Surplus of off-street parking with new development</td>
</tr>
<tr>
<td>14</td>
<td>Bike Dedicated Bicycle Lanes or Sidewalk: (S of Lafayette & N of College)</td>
</tr>
<tr>
<td>15</td>
<td>Bike Dedicated Bicycle Lanes: (College to Locust)</td>
</tr>
<tr>
<td>16</td>
<td>Bike Provide a Continuous Bikeway along the Corridor</td>
</tr>
<tr>
<td>17</td>
<td>Bike Designate Additional Bike Routes - Raab, Virginia, Emerson, Empire, Lincoln, Lafayette</td>
</tr>
<tr>
<td>18</td>
<td>Bike Coordinate Signage Between Communities</td>
</tr>
<tr>
<td>19</td>
<td>Bike Improve Couplet - Add Bike Lane to Couplet Pair</td>
</tr>
<tr>
<td>20</td>
<td>Peds Create Ped Refuge in Median Areas (S of Lafayette & N of College)</td>
</tr>
<tr>
<td>21</td>
<td>Peds Install Sidewalks entire length of corridor</td>
</tr>
<tr>
<td>22</td>
<td>Peds Maintain Buffer between Peds and Vehicle Lanes</td>
</tr>
<tr>
<td>23</td>
<td>Peds Improve Cross Walk Treatments throughout the corridor</td>
</tr>
<tr>
<td>24</td>
<td>Peds Appropriately locate mid-block crossings (Fairview Family Aquatic Center)</td>
</tr>
<tr>
<td>25</td>
<td>Transit Stripe Bus Lanes on Road</td>
</tr>
<tr>
<td>26</td>
<td>Transit Install Bus Shelters, lighting and schedules along Main Street Route</td>
</tr>
</tbody>
</table>

NOTE: IN THE ORIGINAL MAIN STREET PLAN THERE WERE 172 RECOMMENDATIONS FOR IMPROVEMENTS OR MODIFICATIONS. OF THESE, SOME RECOMMENDATIONS WERE NOT RELATED TO TRANSPORTATION ISSUES, AND WERE NOT CONSIDERED IN THE FEASIBILITY STUDY. MANY OF THE REMAINING TRANSPORTATION RECOMMENDATIONS WERE CONSOLIDATED TO PRODUCE THE FINAL LIST OF 26 RECOMMENDATIONS CONSIDERED AND EVALUATED IN THIS STUDY.

Step 2: Verify existing parameters
This step primarily consisted of data collection. Data assembled from various sources includes right-of-way, property lines, pavement widths, bike routes plans, sidewalk connections, traffic and pedestrian counts, speed data, functional classification, traffic simulation files, and transit services.

Step 3: Develop transportation improvement design options/alternatives (to evaluate/test)
In this step, the concepts were developed based on established desirable elements, target speed, number of lanes, travel way and right-of-way widths, bike accommodations, etc. Using the previous Main Street Plan recommendations, as well as new solutions that accomplish a similar
result, engineering concept plans were developed. Compatible thoroughfares in similar contexts were referenced and can be found in the technical memorandums included in Appendix E.

Step 4: Gather community vision
The engineering concept plans were presented to the public overlaid on aerials in the form of display boards. These alternatives were refined based on input received at two open houses, online feedback, ongoing TAG committee response and personal interviews.

Step 5: Evaluate/test each improvement design concept
This step involved testing and comparing the alternative designs to each other and with the existing condition. Each alternate design variable was measured to determine if it achieves the Statement of Purpose objectives as presented in a comparison matrix. The evaluation looked at feasibility of design alternatives within the context of sound engineering, local jurisdictional policy (Normal, Bloomington, IDOT, McLean County), and practicality of next steps (i.e. Phase I design, costs, funding sources.)

Step 6: Identify improvements that are feasible and develop conceptual cross section of design features
In this step, the feasible design features and dimensions are presented categorized by these categories: Traveled Way, Streetside, and Intersections. In almost all cases, as a direct application of the study purpose statement, design features are within existing right-of-way. Only a few exceptions are presented as long-term feasible options that require right-of-way acquisition.

For the purpose of this study, the corridor has been divided into five segments as summarized below and shown in Exhibit 3.

- Segment 1: I-39 to I-55
- Segment 2: I-55 to College Avenue
- Segment 3: College Avenue to Locust Street
- Segment 4: Locust Street to Oakland Avenue
- Segment 5: Oakland Avenue to I-74

Corridor Transportation Facilities
Main Street through Bloomington and Normal is a principal arterial roadway providing a continuous linkage through both communities and beyond. The corridor intersects three Interstates and three other principal arterials. The Interstates are, from north to south, I-39, I-55 and I-74. The principal arterials are, also from north to south, Empire Street, Locust Street (US 150/IL Route 9) and Veterans Parkway (I-55 Bus). Additionally, eleven east-west minor arterials intersect a segment of the corridor. Appendix D contains a corridor functional classification map and corridor sidewalk and bicycle facilities plans. Future regional north-south travel corridors have been identified and are being studied, though implementation is beyond the projected horizon scope of this study.
Transit

Bloomington-Normal Public Transit System (B-NPTS) operates five fixed bus routes that are significantly routed along the corridor: Green A, Red B, Purple C, Brown F, and Aqua K. All buses "kneel" to assist riders who have difficulty boarding in addition to each being equipped with ramps to accommodate people who cannot use steps to board. Buses are equipped with bike racks that allow a bike rider to mount their bike to a rack on the front of the bus. Fixed Routes generally operate Monday through Saturday. Bus stops are strategically placed along the routes but, currently, buses will stop and allow a passenger to board at any corner where it is safe to stop even if no bus stop sign is posted.

B-NPTS uses four principal transfer locations, one of which is located on the corridor in downtown Bloomington at the south side of 100 and 200 West Front Street. At the transfer area, there are signs that show bus route, departure time, direction, and points of interest.

B-NPTS, in cooperation with Illinois State University, provides Redbird Ride for students and visitors to campus during the academic school year.

Feasible design improvements along the corridor generally include:

- Bus shelters at appropriate locations
- Bus stops at intersections at optimized locations
- Bus pull-out boarding/alighting areas where space permits

Traffic Demand

Daily traffic volumes along the corridor were collected from IDOT’s 2009 data. Traffic demand forecasts were then projected for Year 2030 by increasing current volumes approximately 30 percent which is approximately 1.4 percent per year, a very conservative projection (large increase in demand). Existing and Projected Traffic Volumes are shown in exhibits in Appendix D.

Manual intersection turning-movement traffic counts were also conducted at several intersections along the corridor for the purpose of modeling corridor operations. The counts were performed during the weekday morning and afternoon peak periods to determine the peak one hour of traffic activity throughout the day. Peak hour traffic volumes are shown in the technical memorandum in Appendix E.
SEGMENT 1: I-39 TO I-55

Location
This segment of the corridor is in Normal and extends from I-39/Ziebarth Road, the northern limit of the roadway, to I-55 on the south. Full access interchanges are provided at both I-39 and I-55. This link of the corridor provides key arterial access to the Interstate system and serves as a linkage for traffic from I-39. A map of Segment 1 is shown in Exhibit 4 on the following page.

Objective
Create a gateway segment that accommodates high volumes of traffic as well as future bicycle and pedestrian connections to continuing land use development and urbanization.

Existing Segment Characteristics
The context of the corridor can be described as rural agricultural uses with some industrial development containing large setbacks. Segment 1 functions primarily as a rural highway designed to carry larger volumes of traffic, and it has the following characteristics:

- Functional Classification: Principal Arterial
- Intersection Spacing: Approximately ½ mile
- Traffic Control: Signalized Intersections
- On-street Parking: None
- ADT (2009): 3,400-7,500
- Projected ADT (2030): 9,500
- Percent Heavy Vehicle: 6-13%
- Geometrics: Four-lane, divided by median or center two-way turn lane, paved shoulder and ditch
- Pedestrian Facilities: None
- Transit: None
- Bicycle Facilities: none, not a designated bike route
- No landscaping
- Speed Limit: 45mph

Evaluation of Improvement Alternatives

Vision
This segment of the corridor is auto-oriented and is expected to continue to develop as such. Notwithstanding, as potential employment centers or residential subdivisions are introduced, it will be important to provide buffered pedestrian and bicycle access. As further development occurs, access control is desired considering the high volume of through traffic. Furthermore, as indicated in the public meetings, residents envision the corridor as a gateway with a pleasant, aesthetically-pleasing identity.
Exhibit 4: Map of Segment 1 - Main Street from I-39 to I-55
Desirable Design Elements

- Emphasis on vehicular capacity
- Raised landscaped median
- Street trees in median
- Decorative lighting and wayfinding signage
- Access management/consolidated driveways
- Separated off-street multi-use path (east side)
- Streetside amenities buffered from traffic
- Future pedestrian connections to development
- Crossing opportunities at signalized intersections

Considerations/Trade-offs

- Right-of-way/easement opportunities with future development
- Rural section with shoulder and ditch
- Connections with planned or feasible pedestrian/bike facilities
- Increased pedestrian crossing opportunities versus intersections spaced to optimize traffic operations
- Conflict of pedestrian and cyclist with vehicular traffic turning at intersections, particularly at high-speed I-55 ramps

Alternatives

Only one alternative design is considered for the redesign of Segment 1.

Alt 1. Provide landscaped median with large canopy street trees where raised median or center turn lane currently exists. In the long-term, provide an off-street multi-use path as development occurs and pedestrian connections are needed. At such time, intersection pedestrian improvements are to include traffic signal modifications and pavement markings.

A comparison of the alternative improvement options relative to the existing conditions and the Statement of Purpose objectives is shown in Exhibit 5 below.

Exhibit 5: Segment 1 Alternatives Comparison Table

<table>
<thead>
<tr>
<th></th>
<th>Statement of Purpose Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Traffic Operations</td>
</tr>
<tr>
<td></td>
<td>Accommod. Trucks</td>
</tr>
<tr>
<td></td>
<td>Gateway Landscape</td>
</tr>
<tr>
<td></td>
<td>Buffer Ped & Bike Facility</td>
</tr>
<tr>
<td></td>
<td>Increased Ped Crossing</td>
</tr>
<tr>
<td></td>
<td>Access Management</td>
</tr>
<tr>
<td></td>
<td>ROW Acquisition/Easement</td>
</tr>
<tr>
<td>Existing ++</td>
<td>++</td>
</tr>
<tr>
<td>Alt 1 ** ++</td>
<td>++ ++</td>
</tr>
<tr>
<td>++ Good (achieves objectives)</td>
<td></td>
</tr>
<tr>
<td>+ Fair</td>
<td></td>
</tr>
<tr>
<td>O Neutral</td>
<td></td>
</tr>
<tr>
<td>- Poor</td>
<td></td>
</tr>
<tr>
<td>-- Fails to achieve objectives</td>
<td></td>
</tr>
</tbody>
</table>
Feasible Improvements

The following improvement alternatives are feasible for Segment 1 and accomplish the objectives outlined in the Statement of Purpose:

- Alternative 1

Analysis Indicates:

- Creates an appealing gateway corridor and uniform access to maximize landscaping opportunities.
- Eliminates undesirable center left-turn lane and accommodates a safer left-turn lane at intersections.
- Consolidates driveways and locates signalized intersections at ¼-mile spacing to optimize traffic flow but still allow future pedestrian uses more crossing opportunities.
- No changes are contemplated to the travel lanes resulting in minimal impact on capacity operations or truck traffic.
- Long-term: Addition of separated off-street multi-use path results in a better Bike LOS and provides a buffer between vehicles and pedestrian/cyclists.
- Intersection signal phasing modifications and crossing enhancements will improve ped/bike safety without detriment to intersection operations.
- Phasing allows costs to be deferred until there is an increased need for ped/bike facilities.

Cross Sections

The cross section illustration in Exhibit 6 and following description represent how the above discussed improvements might be designed for Segment 1.
TRAVELED WAY

- Four 11-foot travel lanes
- 16-foot landscaped median with left-turn lane at intersections

STREETSIDE

Short-term:
- As Is (Shoulder & Ditch)

Long-term:
- 10-foot off-street multi-use path
- Pedestrian scale path lighting
- Maximize buffer/parkway width

INTERSECTIONS

- Future signalized intersection spacing at ¼-mile
- High-visibility crosswalks
- Implement pedestrian signal phase
- Countdown pedestrian signal heads
- Channelized right-turn lanes with pedestrian refuge island
- Pedestrian-only phase at I-55 ramp intersections to protect pedestrian movements

Aerial Plans

Exhibits 7 and 8 on the following pages are presentation boards of Segment 1 showing aerial photographs with engineering concept overlays of how the feasible improvements might be designed.
This page intentionally left blank.
SEGMENT 2: I-55 TO COLLEGE AVENUE

Location

This segment of the corridor extends from just south of the I-55 interchange ramps to just north of College Avenue. Key destinations in the vicinity of the corridor include Heartland Community College, Fairview Park, Illinois State University, and Uptown Normal. A map of Segment 2 is shown in Exhibit 9 on the following page.

Objective

Transform the character and motorist perception of the corridor, especially south of Raab Road, from a high speed arterial into a gateway divided boulevard that safely integrates traffic, transit, pedestrians and bicyclist without compromising vehicular capacity.

Existing Segment Characteristics

The context of the corridor includes auto-oriented commercial, single-family residential, public parks, and the University district. Commercial uses have various setbacks with mostly front parking lots, while the residential uses vary in lot size and housing type. Segment 2 of the corridor has the following characteristics:

- Functional Classification: Principal Arterial
- Intersection Spacing: Varies from 1,800 feet on north end to 700-300 feet toward the south end
- Traffic Control: Signalized at Collectors and Minor Arterials
- On-street Parking: None
- ADT (2009): 14,000-25,000
- Projected ADT (2030): 31,000
- Percent Heavy Vehicle: 4-5%
- Geometrics: Four-lane, center two-way turn lane, right-turn lane at key intersections
- Pavement width: 68-69 feet
- Pedestrian Facilities: Sidewalks
- Transit Service: Two bus routes
- Bicycle Facilities: None
- Speed Limit: Varies 35/45mph
Exhibit 9: Map of Segment 2 - Main Street from I-55 to College Avenue
Evaluation of Improvement Alternatives

Vision
This segment is a critical link between the higher speed auto-oriented segment north of Raab Road and the pedestrian-oriented University campuses. It serves as a gateway transition segment that should be reflected in reduced speeds and multimodal facilities. The vision is of a roadway serving a mixed environment since it is a key link between a variety of adjacent land uses including residential, recreational, commercial, and university. Using a boulevard type model, the roadway segment is envisioned to provide a landscaped median, on-street bike lanes, and transit amenities. Parking is undesirable for this segment.

Desirable Design Elements
- Lower target speed
- Landscaped median in select locations
- Access management
- On-street bike lanes
- Wider sidewalks
- Additional/safer pedestrian crossing opportunities at signalized intersections
- General emphasis on multimodal travel
- Standard multimodal intersection design

Considerations/Trade-offs
- Transition from higher speed segment to lower speed segment
- Provide bike accommodations without widening pavement
- Mix of bicyclist and vehicular traffic
- Provision of wider sidewalks to accommodate pedestrians more comfortably
- Number of access drives
- Pedestrians frequently crossing at unsignalized locations
- Vehicle volumes and speeds serve as campus/pedestrian barrier

Alternatives
Alt 1. Widen the sidewalk on the west side to create a multi-use sidepath for pedestrians and casual cyclists.
Alt 2. Provide on-street bike lanes by reducing travel lane widths to 11 feet.
Alt 3. Provide a landscaped median in select locations to manage access and enhance the streetscape.

In all cases, the intersection of Main Street with McKinley Street or Summit Street should be monitored for signalization. Commercial access drives are to be consolidated and better aligned. The sidewalk on the east side of Main Street north of Orlando is to be widened to 6 feet minimum and the sidewalk network is to be completed on Raab Road and Main Street.

A comparison of the alternative improvement options relative to the existing conditions and the Statement of Purpose objectives is shown in *Exhibit 10* on the next page.
Exhibit 10: Segment 2 Alternatives Comparison Table

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing --</td>
<td>o</td>
<td>++</td>
<td>++</td>
<td>--</td>
<td>-</td>
<td>--</td>
<td>--</td>
<td>+</td>
</tr>
<tr>
<td>Alt 1</td>
<td>-</td>
<td>++ ++</td>
<td>++</td>
<td>o</td>
<td>-</td>
<td>o</td>
<td>++</td>
<td>o</td>
</tr>
<tr>
<td>Alt 2</td>
<td>++ o</td>
<td>+</td>
<td>-</td>
<td>o</td>
<td>-</td>
<td>++ o</td>
<td>++</td>
<td>++ o</td>
</tr>
<tr>
<td>Alt 3</td>
<td>0</td>
<td>0</td>
<td>++</td>
<td>+ ++</td>
<td>++ ++</td>
<td>++ ++</td>
<td>++</td>
<td>++</td>
</tr>
</tbody>
</table>

++ Good (achieves objectives)
+ Fair
o Neutral
- Poor
-- Fails to achieve objectives

Feasible Improvements

The following improvement alternatives are feasible for Segment 2 and accomplish the objectives outlined in the Statement of Purpose:

- Alternative 2
- Alternative 3

Analysis Indicates:

- A 10-foot sidepath on the west side was determined to be unfeasible due to the many curb cuts.
- The additional pavement width from narrowing the lane can be used to implement bike lanes or widen the parkway.
- Narrowing travel lanes to an 11-foot maximum is not detrimental to truck traffic, and at the same time improves pedestrian safety by slowing vehicular speeds.
- Widening the sidewalk on the east side to 6 feet minimum north of Orlando does not require additional right-of-way.
- Addition of bike lanes on Main Street results in a better Bike LOS and improves corridor bike access for more comfortable cyclists.
- Landscaped median in select locations will control access, reduce the occurrence of center two-way turn lanes, and enhance the streetscape.
- Traffic flow on Main Street will benefit from several consolidated and better aligned driveways.
- Adding a traffic signal at the McKinley Street or Summit Street intersection will create a signalized pedestrian crossing location near Fairview Park where there isn’t one within approximately 1/3 mile in either direction.
Cross Sections

The cross section illustration in Exhibit 11 and following description represent how the above discussed improvements might be designed for Segment 2.

Exhibit 11: Cross Section - Main Street from Raab Road to College Avenue

TRAVELED WAY
- Target speed: 30 mph
- Four 11-foot travel lanes
- 12 to 13-foot landscaped median in various sections with left-turn lane at intersections
- Two 6-foot bike lanes (one on each side of the roadway) or widen the parkway by 5-6 feet
- Reconstruct curb and gutter
- Replace storm drain grates

STREETSIDE
- Minimum 6-foot sidewalk (east side)
- Enhance street lighting

INTERSECTIONS
- New traffic signal at Summit Street or McKinley Street intersection
- High-visibility crosswalks
- Safety lighting
- Countdown pedestrian signal heads
- Pedestrian refuge island at channelized right-turn lanes

Aerial Plans

Exhibits 12 and 13 on the following pages are presentation boards of Segment 2 showing aerial photographs with engineering concept overlays of how the feasible improvements might be designed.
This page intentionally left blank.
SEGMENT 3: COLLEGE AVENUE TO LOCUST STREET

Location
This segment of the corridor is comprised of Main Street and Kingsley Street/Center Street as it splits into two rights-of-way just south of College Avenue. It remains a couplet throughout most of the study area until it merges in its approach to R T Dunn Drive. The southbound portion of the couplet changes in name from Kingsley Street north of Hovey Street to Center Street south of Hovey Street. Main Street makes up the northbound portion of the couplet. A map of Segment 3 is shown in Exhibit 14 on the following page.

Objective
Design a thoroughfare that accommodates high volumes of traffic, as well as bikes on-street. Vehicular movements should be sensitive to the surroundings, especially fronting residential and transitioning into and out of the Central Business District. On-street parking is desired on Main Street.

Existing Segment Characteristics
The context of the corridor segment includes the outer edge of the University district, as well as a mix of mid-size commercial on smaller lots and residential on the west side of Center Street. It transitions into the CBD at the south end of the segment. Segment 3 of the corridor has the following characteristics:

- Functional Classification: Principal Arterial
- Intersection Spacing: Varies from 400-600 feet
- Traffic Control: Signalized at Collector Roadways
- On-street Parking: Intermittent parallel both sides Main Street
- Main Street ADT (2009): 14,000-16,000
- Kingsley Street ADT (2009): 13,200
- Center Street ADT (2009): 12,000-15,000
- Projected ADT (2030): 16,000-21,000 (one-way)
- Percent Heavy Vehicle:
 - Kingsley/Center Street: 7-8%
 - Main Street: 4-5%
- Geometrics:
 - Kingsley/Center Street: Two-lane, one-way southbound traffic operations
 - Main Street: Three-lane, one-way northbound operations; parking on both sides
Exhibit 14: Map of Segment 3 – Main Street & Center Street/Kingsley Street from College Avenue to Locust Street
Main Street Feasibility Study
Section 3: Corridor Analysis

• Pavement Width:
 o Kingsley/Center Street: 30 feet
 o Main Street: 32-50 feet
• Pedestrian Facilities: Incomplete sidewalk system
• Bicycle Facilities: None
• Speed Limit: 30mph
• Prevailing Speed: 33mph

Evaluation of Improvement Alternatives

Vision
It is desired that the corridor complement its context as it transitions in to/out of downtown. Through residential areas specifically, the corridor character should respect resident quality of life with reduced speeds. On-street bicycle facilities are envisioned to connect the University districts to downtown. Furthermore, vehicular movements along the corridor should not serve as a barrier to University connectivity.

Desirable Design Elements
• Lower target speed
• On-street bike lanes
• Crossing opportunities at signalized intersections
• Typical multimodal signalized intersection design
• Retention of parking where currently exists

Considerations/Trade-offs
• Accommodation of larger vehicles versus narrowing lane widths
• Provide bike accommodations without widening pavement
• Addition of bike lanes versus vehicular conflicts on arterial roadway
• High number of pedestrians, especially around campus
• Reduction in the number of through lanes versus provision of bike lanes

Alternatives
Alt 1. Provide an on-street one-way southbound bike lane on Kingsley Street/Center Street by reducing lane widths.
Alt 2. Reduce lane widths to increase parkway.
Alt 3. Provide an on-street one-way northbound bike lane on Main Street north of Division by reducing lane widths.
Alt 4. Provide protected bike lanes (see description to the right) on Main Street south of Division by reducing the number of travel lanes from three to two while maintaining parking on both sides.

Alt 5. Provide a two-way cycle track (see description to the right) on Main Street south of Division by reducing the number of travel lanes from three to two and removing parking on one side of the street.

In all alternative options, improvements at the Main Street/College Avenue intersection are to include optimized signal timings, turn lane modifications, and pedestrian enhancements. Existing sidewalks should be widened on both sides of Main Street where possible.
A comparison of the alternative improvement options relative to the existing conditions and the Statement of Purpose objectives is shown in *Exhibit 15* below.

Exhibit 15: Segment 3 Alternatives Comparison Table

<table>
<thead>
<tr>
<th></th>
<th>Statement of Purpose Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Retain Parking</td>
</tr>
<tr>
<td>Existing ++</td>
<td>--</td>
</tr>
<tr>
<td>Alt 1</td>
<td>++</td>
</tr>
<tr>
<td>Alt 2</td>
<td>++</td>
</tr>
<tr>
<td>Alt 3</td>
<td>++</td>
</tr>
<tr>
<td>Alt 4</td>
<td>++</td>
</tr>
<tr>
<td>Alt 5</td>
<td>--</td>
</tr>
</tbody>
</table>

++	Good (achieves objectives)
+	Fair
o	Neutral
-	Poor
--	Fails to achieve objectives

Feasible Improvements

The following improvement alternatives are feasible for Segment 3 and accomplish the objectives outlined in the Statement of Purpose:

- Alternative 1
- Alternative 2
- Alternative 3
- Alternative 4

Analysis Indicates:

- Projected traffic volumes on Main Street can be accommodated with two travel lanes resulting in minimal impact on capacity operations.
- Community input indicates lane reduction in this segment is reasonable.
- Main Street already transitions to two northbound lanes at Division Street.
- Reduction in number of travel lanes on Main Street improves pedestrian safety by slowing vehicular speeds.
- Generally, existing parking on Main Street is retained. Parking restrictions at Emerson Street and Empire Street will allow for northbound left-turn lanes.
- Narrowing travel lanes to an 11-foot maximum is not detrimental to truck traffic, and at the same time improves pedestrian safety by slowing vehicular speeds.
- Addition of protected bike lanes on Main Street results in a higher Bike LOS, improves bike connections between the universities and downtown and provides a buffer for cyclist.
• Addition of bike lanes on Kingsley Street and Center Street also results in a better Bike LOS and does not require pavement widening. Curb and gutter flags will need reconstruction and storm drains grates will need replacing.
• Modifications at Main Street/College Avenue intersection will improve vehicular operations as well as pedestrian safety.
• The two-way cycle track option was not preferred by the community and presented challenges to connect to other one-way segments of the corridor if not implemented continuously throughout the study area.

Cross Sections
The cross section illustration in Exhibit 16 and following description represent how the above discussed improvements might be designed for Center Street and Kingsley Street between College Avenue and Locust Street.

Exhibit 16: Cross Section - Center Street/Kingsley Street from College Avenue to Locust Street

TRAVELED WAY
• Target speed: 30 mph
• Two 11-foot travel lanes
• One 6-foot bike lane or widen the parkway sidewalk
• Replace storm drain grates
• Reconstruct curb and gutter flag
• Long term: reconstruct viaducts to accommodate sidewalk on both sides of Main Street and Center Street

STREETSIDE
• Widen sidewalks to 6 feet minimum
• Complete sidewalk system north of Dale Street
• Future bridge reconstruction to accommodate sidewalk on both sides
The cross section illustration in *Exhibit 17* and the following description represent how the above discussed improvements might be designed for Main Street between College Avenue and Division Street.

Exhibit 17: Cross Section - Main Street from College Avenue to Division Street

TRAVELED WAY
- Target speed: 30 mph
- Two 11-foot travel lanes
- One 6-foot bike lane or widen the parkway
- Replace storm drains
- Reconstruct curb and gutter flag

STREETSIDE
- Future bridge reconstruction to accommodate sidewalk on both sides
- Widen sidewalks to 6 feet minimum

INTERSECTIONS
- Lengthen southbound left-turn lane on Main Street at College Avenue
- Adjust corridor signal timing to optimize operations (refer to technical memorandum)
- High-visibility crosswalks and pedestrian countdown signal heads at all signalized intersections
The cross section illustration in *Exhibit 18* and the following description represent how the above discussed improvements might be designed for Main Street between Division Street and Locust Street.

Exhibit 18: Cross Section - Main Street from Division Street to Locust Street

TRAVELED WAY
- Target speed: 30 mph
- Two 8-foot parking lanes
- Two 11-foot travel lanes
- One 6-foot bike lane and 4-foot painted buffer (protected bike lane) or widen the parkway

STREETSIDE
- Widen sidewalks to 6 feet minimum where possible or if parkway is widened

INTERSECTIONS
- No parking on west side Main Street at Emerson Street and Empire Street to accommodate northbound left-turn lane
- High-visibility crosswalks and pedestrian countdown signal heads at all signalized intersections

Aerial Plans
Exhibits 19 and 20 on the following pages are presentation boards of Segment 3 showing aerial photographs with engineering concept overlays of how the feasible improvements might be designed.
FUTURE VIADUCT RECONSTRUCTION TO ACCOMMODATE SIDEWALK

NARROW TRAVEL LANES TO 11’ AND STRIPE SOUTHBOUND BIKE LANE

WIDEN SIDEWALKS

NARROW TRAVEL LANES TO 11’ AND STRIPE NORTHBOUND BIKE LANE

NARROW TRAVEL LANES TO 11’ AND STRIPE SOUTHBOUND BIKE LANE

SIGNAL TIMING ADJUSTED TO OPTIMIZE OPERATIONS

MAIN STREET FEASIBILITY STUDY
BLOOMINGTON - NORMAL, ILLINOIS

VIRGINIA AVENUE TO COLLEGE AVENUE
SEGMENT 4: LOCUST STREET TO OAKLAND AVENUE

Location
This segment of the corridor makes up the core of Bloomington’s Central Business District and is comprised of East Street, Main Street, Center Street, and Madison Street from Locust Street on the north to Oakland Street on the south. Between Locust Street and Olive Street, US Business 51 is designated along East Street and Madison Street, a one-way couplet that bypasses the core of the downtown area. Between Olive Street and Oakland Street, the designation is along Main Street and Center Street. A map of Segment 4 is shown in Exhibit 21 on the following page.

Objective
Transform the character of the corridor through the Central Business District to be more supportive of bicycle and pedestrian activity and pedestrian-oriented land uses as a strategy to stimulate business growth.

Existing Segment Characteristics
The context of the corridor primarily focuses on the segment between Locust Street and Olive Street which can be described as the city center with a mix of retail, office, and civic uses, predominately attached buildings with minimal setback, landscaping occurring in the public right-of-way, substantial pedestrian activity and a key transit destination/transfer location.

East Street and Madison Street (US Business 51) make up a one-way arterial couplet that bypasses the core of the downtown. The pair has the following characteristics:

- Functional Classification: Principal Arterial
- Intersection Spacing: 300-400 feet
- Traffic Control: Signalized Intersections
- On-street Parking: None
- Madison Street ADT (2009): 10,000-12,000
- East Street ADT (2009): 11,500-13,500
- Projected ADT (2030): 18,000
- Percent Heavy Vehicle: 5-8%
- Geometrics: Four-lane, one-way traffic operations, primarily shared turn lanes
- Pavement Width:
 - Madison Street: 51 feet
 - East Street: 42 feet
- Pedestrian Facilities: Attached sidewalk on both sides
- Transit: Services several routes
- Bicycle Facilities: none, not a designated bike route
- Speed Limit: 30mph
- Prevailing Speed: 35-36mph
Exhibit 21: Map of Segment 4 –
Main Street & Center Street from Locust Street to Oakland Avenue
East Street & Madison Street from Locust Street to Olive Street
Main Street and Center Street make up the internal one-way couplet through the CBD core serving local traffic circulation. The pair has the following characteristics:

- Functional Classification: Collector Street
- On-street Parking: Angle and Parallel
- Main Street ADT (2009): 2,100
- Center Street ADT (2009): 3,700
- Local truck traffic only
- Geometrics: Two-lane, one-way traffic operations

The corridor transitions south of Olive Street into primarily industrial uses as it grade separates to bridge the railroad tracks and Constitution Trail.

Evaluation of Improvement Alternatives

Vision

Through traffic along the corridor is to remain on the perimeter of downtown along East Street and Madison Street and local traffic circulation shall continue to occur on Main Street and Center Street. The community envisions all streets making up the corridor through downtown to be very walkable and emphasize pedestrian safety, in an effort to increase pedestrian activity. Considering the central business district is a key community destination, expansion of the bicycle plan along the corridor is desired. On-street parking is a priority economically throughout the downtown area.

Desirable Design Elements

- Retain through/truck traffic on East Street and Madison Street
- Two-way traffic operations and on-street parking on Main Street and Center Street
- Accommodate loading activity throughout the CBD
- Emphasize pedestrian safety
- Reduce crossing width
- Retain wide sidewalks
- Lower target speed (30 mph)
- Speed transition into and out of CBD
- Street furniture, public space, and landscaping
- Bus stops with shelter
- Bike accommodations

Considerations/Trade-offs

- Pavement width on Main Street and Center Street between Olive Street and Oakland Avenue
- Reduction in the number of through lanes versus provision of bike lanes, drop-off lanes (at BCPA and US Cellular Coliseum), and pedestrian buffers.
- Accommodation of larger vehicles, particularly turning at intersections, versus smaller curb radii and curb extensions to reduce crossing width
- Provision of bike lanes versus maximizing parking with angled parking (Center Street and Main Street)
Main Street Feasibility Study
Section 3: Corridor Analysis

- Higher speed thoroughfare versus narrowing lane width to reduce travel speeds and reduce crossing width for pedestrians
- Addition of bike lanes versus vehicular conflicts on arterial roadway

Alternatives

Alt 1. Provide bike lanes with a 4-foot painted buffer (protected bike lanes) by reducing the number of travel lanes on East Street and Madison Street from four lanes to three.

Alt 2. Provide on-street parking and a protected bike lane on East Street by reducing the number of travel lanes from four lanes to two with a parking lane, a bike lane, and painted buffer. Provide a protected bike lane on Madison Street by reducing the number of travel lanes from four lanes to three.

Alt 3. Widened parkway and/or sidewalk by reducing the number of travel lanes on East Street and Madison Street from four to three plus various drop-off/loading locations.

In all cases convert the Main Street and Center Street one-way couplet to two-way traffic operations. Implement curb extensions at intersections along Main Street and Center Street to reduce crossing widths. Encourage lower vehicular speeds on East Street and Madison Street by maintaining a maximum 11-foot lane width. Designate the truck route along Locust Street by converting the street to two-way operations between Lee and Main Streets and provide a channelized turn lane at Madison Street and Locust Street for more efficient truck turns. Modify the number of lanes on eastbound Locust Street east of Main Street from three travel lanes to two with a parking/loading lane as shown in the aerial plan at the end of this section. Between Olive Street and Oakland Street, bikes are accommodated on an alternate bike boulevard route along Madison Street as shown in the Bike Facilities Route Plan in Appendix D.

A comparison of the alternative improvement options relative to the existing conditions and the Statement of Purpose objectives is shown in Exhibit 22 below.

Exhibit 22: Segment 4 Alternatives Comparison Table

<table>
<thead>
<tr>
<th></th>
<th>Parking</th>
<th>Sidewalk Width</th>
<th>Traffic Operations</th>
<th>Accommodate Trucks</th>
<th>Pedestrian Crossing Width</th>
<th>Bike Lanes</th>
<th>Speed Reduction</th>
<th>Ped Amenities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing</td>
<td>++</td>
<td>++ ++</td>
<td>++</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Alt 1</td>
<td>--</td>
<td>o ++</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>--</td>
</tr>
<tr>
<td>Alt 2</td>
<td>++</td>
<td>o</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Alt 3</td>
<td>--</td>
<td>++ ++</td>
<td>++</td>
<td>--</td>
<td>--</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

++ Good (achieves objectives)
+ Fair
O Neutral
- Poor
-- Fails to achieve objectives
Feasible Improvements

The following improvement alternatives are feasible for Segment 4 and accomplish the objectives outlined in the Statement of Purpose:

- Alternative 1
- Alternative 3

Analysis Indicates:

- Projected traffic volumes on both East Street and Madison Street can be accommodated with three travel lanes resulting in minimal impact on capacity operations.
- Community input indicated lane reductions from four to three were reasonable in this segment. They were not open to reducing the number of travel lanes to two.
- Narrowing or generally maintaining travel lanes at an 11-foot maximum is not detrimental to truck traffic, and at the same time improves pedestrian safety by slowing vehicular speeds.
- Addition of protected bike lanes on East Street and Madison Street results in a better Bike LOS, improves access to a key community destination and provides a buffer between vehicles and cyclist.
- Widening the parkway instead of implementing bike lanes reduces the distance required for pedestrians to cross the street but does not accommodate cyclists.
- Designation of the truck route along Locust Street and island channelization improvements at its intersection with Madison Street will improve truck movements along the corridor as well as reduce pedestrian crossing distances with refuge islands.
- Reducing the number of travel lanes on eastbound Locust Street east of Main Street will slow vehicle speeds and allow for street parking on the north side.
- The realignment of Main Street and Center Street increases access to the CBD and improves vehicular and pedestrian safety.
- Projected traffic volumes on Main Street and Center Street can be accommodated with the conversion of both streets to operate with two-way traffic. Two-way traffic will better support ground level retail uses with pedestrian activity.
- Curb extensions provide pedestrian benefit by reducing crossing distance, improving visibility, and creating additional public space for landscaping, benches, etc.
Cross Sections

The cross section illustration in Exhibit 23 and following description represent how the above discussed improvements might be designed for East Street and Madison Street in Segment 4 between Locust Street and Olive Street.

Exhibit 23: Cross Section –
East Street and Madison Street from Locust Street to Olive Street

TRAVELED WAY

- Target speed: 30 mph
- Traffic signals synchronized to target speed
- Three 11-foot travel lanes (one-way)
- One 6-foot bike lane and 4-foot painted buffer (protected bike lane) or widen parkway and/or sidewalk
- Reconstruct curb and gutter if widening parkway

STREETSIDE

- If not implementing bike lanes on East/Madison Streets, widen parkway and sidewalk
- Pedestrian scale lighting
- Provide a furnishing zone for pedestrian amenities where possible
- Extend streetscape on Main Street to East and Madison Streets
The cross section illustration in Exhibit 24 shows how the feasible improvements might be designed for Center Street as it is converted from one-way to two-way traffic operations between Locust Street and Front Street.

Exhibit 24: Cross Section - Center Street with Two-Way Traffic from Locust Street to Front Street

The following description addresses how Center Street and Main Street might be designed.

TRAVELED WAY

Center Street:
- Target speed: 25 mph
- Two 14-foot shared travel lanes
- Two 8-foot parallel parking lanes

Main Street:
- Target speed: 25 mph
- Two 11-foot travel lanes
- One 18-foot angled parking lane (east)
- One 8-foot parallel parking lane (west)

STREETSIDE

- Retain existing sidewalk widths on Main and Center Streets (varies 8-20 feet)
- Pedestrian scale lighting
- Provide a furnishing zone for pedestrian amenities where possible
- Extend streetscape enhancements (planters, benches, lighting) on Main Street to Center Street

STREETSCAPE ENHANCEMENTS ON MAIN STREET IN DOWNTOWN BLOOMINGTON
INTERSECTIONS

- Curb extensions on Main Street and Center Street where turn lanes are not necessary
- High-visibility crosswalks
- Extend Main Street through to East Street at the north end of Downtown Bloomington by introducing a roadway connection between Main Street and East Street north of Mulberry Street such that a T-intersection is formed (see Exhibit 25I plan referenced below.
- Realign the segment of Center Street between Locust Street and Mulberry Street such that Center Street intersects Madison Street at a 90-degree angle, forming a T-intersection. Also see the aerial plan referenced below.
- Introduce channelized turn lane with pedestrian refuge island at Locust Street/Madison Street

CROSS STREET

Locust Street:
- Convert to two-way operations Lee to Main
- Two eastbound lanes, one westbound lane
- Two eastbound lanes from Main to Prairie with parking lane on north side

Aerial Plans

As previously referenced, *Exhibit 25* on the following page is a presentation board of Segment 4 showing an aerial photograph with an engineering concept overlay of how the feasible improvements might be designed.
CONVERT CENTER AND MAIN STREETS TO TWO-WAY OPERATION

TRAVEL LANE REDUCTION FOR:
- WIDER SIDEWALK
- ENHANCED LANDSCAPING
- SOUTHBOUND PROTECTED BIKE LANE

TRAVEL LANE REDUCTION FOR:
- WIDER SIDEWALK
- ENHANCED LANDSCAPING
- NORTHBOUND PROTECTED BIKE LANE

CONVERT LOCUST TO TWO-WAY OPERATIONS FROM LEE TO MAIN AND CREATE AN ALTERNATE TRUCK ROUTE

REALIGN CENTER STREET INTERSECTION WITH MADISON STREET

CHANNELIZE SOUTHBOUND RIGHT TURN LANE

EXTEND MAIN STREET TO INTERSECT W/ EAST STREET

REDUCE THE NUMBER OF EASTBOUND TRAVEL LANES ON LOCUST EAST OF MAIN STREET
This page intentionally left blank.
SEGMENT 5: OAKLAND AVENUE TO I-74

Location
This segment of the corridor extends from Oakland Street to I-74 on the south edge of the study area. North of R T Dunn Drive, the corridor segment and US Business 51 designation is comprised of Main Street and Center Street, a one-way couplet along two separate rights-of-way. Center Street merges with Main Street to the north of R T Dunn Drive and the designation is along Main Street which is a two-way divided roadway along a single right-of-way. State Farm Park is a key destination along the segment. Full access interchanges are provided at Veterans Parkway (I-55B) and I-74. A map of Segment 5 is shown in Exhibit 26 on the following page.

Objective
Design a thoroughfare that accommodates high volumes of traffic, buffers pedestrian and bicycle activity and is sensitive to the surroundings transitioning from residential to mixed commercial to auto-oriented commercial and industrial.

Existing Facility Characteristics
The context of the corridor changes significantly to the north and south of Veterans Parkway. It transitions from residential and mixed-use to multi-family residential and commercial/office park.
- Functional Classification: Principal Arterial
- Intersection Spacing: Transitions from 300-400 feet to ¼-mile
- Traffic Control: Signalized at Collectors
- On-street Parking: None
- Main Street ADT (2009):
 - One-way section: 11,500
 - Two-way section: 15,000-20,000
- Center Street ADT (2009): 9,000-11,000
-Projected ADT (2030 combined): 26,000
- Percent Heavy Vehicle: 6-8%
- Geometrics:
 - Center Street: Two-lane, one-way traffic operations
 - Main Street (Oakland Street to R T Dunn Drive): Three-lane, one-way operations
 - Main Street (R T Dunn Drive to I-74): Four-lane, center raised or grass median and left turn lane at intersections
- Transit: one bus route
- Bicycle Facilities: none, not a designated bike route
Couplet Pavement Width:
- Center Street: 26 feet
- Main Street: 39 feet

Speed Limit: Varies 30/35/45mph

Prevailing Speed: 39 mph in posted 35, 48-54mph in posted 45

Evaluation of Improvement Alternatives

Vision

It is desired that the corridor complement its context as it transitions into/out of downtown. Through residential areas specifically, the corridor character should respect resident quality of life with low speeds and streetside buffers. As land uses change to more auto-oriented mixed commercial and office park, it will be important to provide buffered pedestrian and bicycle access. As further development occurs, access control is desired considering the high volume of through traffic. Similar to the north end of the corridor, this segment has the opportunity to be a gateway with a pleasant, aesthetically-pleasing identity.

Desirable Design Elements

- Lower target speed (30 mph) through residential areas
- Streetside/bike facilities buffered from traffic
- Separated sidewalks
- Emphasis on traffic operations
- Access management with driveway consolidation
- Landscape median (south of R T Dunn Drive)
- Safe crossing opportunities for pedestrian and bicycles
- Street trees, enhanced landscaping

Considerations/Trade-offs

- Right-of-way requirement for implementing a separated off-street bicycle facility
- Pavement width especially narrow along Center Street
- Reduction in the number of through lanes on Main Street north of R T Dunn Drive versus provision of bike and pedestrian buffers
- Accommodation of larger vehicles
- Intersections spaced to optimize traffic flow versus crossing opportunities
- Access management

Alternatives

Alt 1. Provide separated 10-foot off-street multi-use path along corridor between Lafayette Street and Brigham School Road

Alt 2. Provide buffer/shoulder area for bicyclist and on-street parking in select areas by reducing the number of (northbound) travel lanes on Main Street north of R T Dunn Drive from three lanes to two.

Alt 3. Provide bike lane on Main Street north of R T Dunn Drive by reducing lanes widths to an 11-foot maximum.
In all cases the existing pavement section on Center Street is maintained and southbound cyclists are accommodated along Madison Street which is a designated bike route one block west of Center Street. Access management is envisioned with raised landscaped medians and the consolidation of existing and future driveways where possible south of R T Dunn Drive. Sidewalks to be installed on Center Street where the network is incomplete near the golf course.

A comparison of the alternative improvement options relative to the existing conditions and the Statement of Purpose objectives is shown in Exhibit 27 below.

Exhibit 27: Segment 5 Alternatives Comparison Table

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing</td>
<td>-</td>
<td>--</td>
<td>--</td>
<td>++</td>
<td>++</td>
<td>--</td>
<td>++</td>
<td>--</td>
<td>o</td>
</tr>
<tr>
<td>Alt 1</td>
<td>++</td>
<td>--</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>--</td>
<td>++</td>
</tr>
<tr>
<td>Alt 2</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>-</td>
<td>--</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Alt 3</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>0</td>
<td>0</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
</tbody>
</table>

++ Good (achieves objectives)
+ Fair
o Neutral
- Poor
-- Fails to achieve objectives

Feasible Improvements

The following improvement alternatives are feasible for Segment 5 and accomplish the objectives outlined in the Statement of Purpose:

- Alternative 1
- Alternative 3

Analysis Indicates:

- Narrowing travel lanes to an 11-foot maximum (north of R T Dunn Drive) is not detrimental to truck traffic and improves pedestrian safety by slowing vehicular speeds.
- Pavement widening is not required.
- Addition of a bike lane on Main Street results in a better Bike LOS and improves northbound bike access.
- Addition of separated off-street multi-use path (south of R T Dunn Drive) results in a better Bike LOS and provides a buffer between vehicles and pedestrians/cyclists.
- Southbound cyclists are accommodated along Madison Street which is a designated bike route one block west of Center Street. Refer to the Bike Facilities Plan Map in the Appendix.
- Minimize number of driveways where feasible to optimize traffic flow.
- Landscaped median (south of Veterans Parkway) creates an appealing gateway corridor and uniform access to maximize landscaping opportunities.
- Intersection signal phasing modifications and crossing enhancements will improve ped/bike safety without detriment to intersection operations.
- Community input indicated that lane reductions on Main Street between Oakland Street and RT Dunn Drive were not favorable making Alternative 3 not preferred.

Cross Sections

The cross section illustration in *Exhibit 28* and following description represent how the above discussed improvements might be designed for Main Street between Oakland Street and RT Dunn Drive. In this section of Segment 5, Center Street would be maintained with its existing cross section as noted below.

**Exhibit 28: Cross Section -
Main Street from Oakland Street to R T Dunn Drive**

TRAVELED WAY

Main Street (Oakland Street to R T Dunn Drive):
- Target speed: 30 mph
- Three 11-foot travel lanes
- One 5-foot bike lane

Center Street (Oakland Street to R T Dunn Drive):
- Target speed: 30 mph
- Maintain existing lane configuration

STREETSIDE

- Retain existing sidewalks
- 10-foot off-street multi-use path on west side from Lafayette Street to Oak Creek Plaza
- Pedestrian scale path lighting
The cross section illustration in *Exhibit 29* and following description represent how the above discussed improvements might be designed for Main Street south of RT Dunn Drive to Brigham School Road.

![Exhibit 29: Cross Section –
Main Street from R T Dunn Drive to Brigham School Road](image)

TRAVELED WAY

- Target speed: 45 mph
- Four 11-foot travel lanes
- Raised landscaped median

STREETSIDE

- Retain existing sidewalks
- 10-foot off-street multi-use path on east side from Oak Creek Plaza to Brigham School Road
- Pedestrian scale path lighting
- Street trees buffering traveled way where possible

INTERSECTIONS

- Special bike crossing treatments at Main Street/Oak Creek Plaza
- High-visibility crosswalks and pedestrian countdown signal heads at all signalized intersections

Aerial Plans

Exhibits 30, 31 and 32 on the following pages are presentation boards of Segment 5 showing aerial photographs with engineering concept overlays of how the feasible improvements might be designed.
This page intentionally left blank.
Section 4: Next Steps

The preceding sections of this report conclude the Technical Advisory Group’s Feasibility Study of the Main Street Corridor from I-39 to I-74. The report will be presented individually to each of the City of Bloomington and Town of Normal Councils, which will review the improvement alternatives as presented. Given the diversity and abundance of stakeholder input solicited in the CSS process, it is the hope of the Technical Advisory Group that this report is used as a living document towards implementation of a more accessible and efficient multimodal Main Street corridor.

Implementing many of the improvement alternatives to the Corridor will likely require the City of Bloomington and the Town of Normal to pursue Federal or State Funding through one of a variety of sources. A compilation of potential funding sources is included in this section, as well as an order of magnitude cost estimate for use to pursue that funding and a description of the engineering and construction process.

FUNDING SOURCES

A number of grants are available through State and Federal programs, namely through IDOT, the Illinois Department of Natural Resources, and the US Department of Housing and Urban Development. Money is available for transportation related improvements to reduce motor vehicle, pedestrian, and bicycle crashes, fatalities, and injuries, and to increase safety for all users of our roadways.

Utilizing funds from Federal or State programs, requires coordination with IDOT’s local and Springfield offices of the Bureau of Local Roads and Streets (BLRS) and in many cases the McLean County Regional Planning Commission which is tasked with administrating the distribution of the engineering and construction dollars.

The following is a compilation of potential fund sources for Main Street Corridor infrastructure projects:

Illinois Department of Transportation

1. Illinois Transportation Enhancement Program (ITEP)

Under ITEP, IDOT works jointly with other state agencies, local governments, interest groups and citizens in enhancing the transportation system and building more livable communities. ITEP provides funding for community based projects that expand travel choices including cultural, historic, aesthetic, and environmental improvements related to transportation infrastructure. A project must fall into one of twelve (12) eligible categories listed within the ITEP Guidelines Manual and also must relate to surface transportation in order to qualify.
A sub-category of the ITEP program is the Illinois Green Streets Initiative. The goal of this initiative is to reduce greenhouse gas emissions in the state, and to address the growing threat of global climate change, through landscape or streetscape projects that involve the planting of native trees and prairie grasses.

Funding will be provided for up to 80 percent of the project costs with the remaining 20 percent the responsibility of the program sponsor. Website: http://www.dot.il.gov/opp/itep.html

2. **Surface Transportation Program (STP)**

The regional STP is a federal transportation program used by states and localities on any Federal-aid highway, bridge projects on any public road, transit capital projects, and bus terminals and facilities. The federal share for the program is typically 80 percent, but is subject to the sliding scale adjustment. This program is administered through IDOT and the McLean County Regional Planning Commission.

STP funds may be used to finance improvements to the surface transportation system. The funds can be used to improve eligible arterial and collector streets (highway) or Transportation Control Measure (TCM) projects. Examples of the types of highway projects that may be funded include those categorized as reconstruct, rehabilitate and restore; lane modification; intersection improvements; or traffic signal improvements. TCM projects may include pedestrian or bicycle improvements; commuter parking; transit improvements, capital expenditures, and intelligent transportation systems (ITS) projects.

3. **Congestion Mitigation and Air Quality Program (CMAQ)**

The CMAQ Improvement Program is a federally-funded program of surface transportation improvements designed to improve air quality and mitigate congestion. CMAQ was created in 1991 as part of the Intermodal Surface Transportation Efficiency Act (ISTEA). Continuation of the program was authorized by the Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU) in August 2005. Eligible projects include pedestrian and bicycle facility projects, as well as transit improvements and traffic flow projects. IDOT administers the program. CMAQ grants are awarded each fiscal year dependent on available funding from a Congressional appropriation of funds.

4. **Illinois Safe Routes to School (SRTS)**

The Illinois SRTS is administered by IDOT and uses a multidisciplinary approach to improve conditions for students who walk or bike to school. SRTS funds both infrastructure improvements to the physical environment as well as non-infrastructure projects. Eligible project sponsors include schools and school districts, governmental entities and non-profit organizations. Applications are made on a per school district basis and may be organized on a variety of jurisdictional levels. Projects are funded at 100 percent with no local match required. The application process is online only.

Website: http://www.dot.il.gov/saferoutes/saferouteshome.aspx
5. **Illinois Tomorrow Corridor Planning Grant Program**

This five-year, $15 million grant program for local governments helps communities develop land use and infrastructure plans that promote efficient use of transportation facilities and improve quality of life. The program will fund planning activities that promote the integration of land use, transportation and infrastructure facility planning in major transportation corridors in Illinois. The goals of the program are to promote land use and transportation options that reduce the growth of congestion, connect infrastructure and development decisions, promote balanced economic development that reduces infrastructure costs and promote intergovernmental cooperation. The program is administered by IDOT.

Website: http://www fhwa dot gov/ planning/ landuse/ illinoiscs.htm

Illinois Department of Natural Resources

6. **Open Space Lands Acquisition and Development (OSLAD)**

OSLAD is a state-financed grant program that provides funding assistance to local government agencies for acquisition and/or development of land for public parks and open space. The federal Land & Water Conservation Fund program (LWCF) is a similar program with similar objectives. Both are managed by the Illinois Department of Natural Resources (IDNR), financed by the state's Real Estate Transfer Tax and have concurrent application due dates, equal grant maximums and similar general rules. Both programs have been used to fund bicycle/multi-use trail development.

Under both programs, funding assistance up to 50 percent of approved project costs can be obtained. Applications are accepted between May 1 and July 1 of the calendar year.

Website: http://dnr state il us/ ocd/ newoslad1.htm

7. **Recreational Trails Program (RTP)**

The RTP provides up to 80 percent funding assistance for acquisition, development, rehabilitation and maintenance of motorized and non-motorized recreation trails. In Illinois, RTP funds are administered by the DNR in cooperation with IDOT and the FHWA. Eligible applicants include federal, state and local government agencies and not-for-profit organizations. Applications are due March 1 of the calendar year.

Website: http://dnr state il us/ ocd/ newrtp2.htm

8. **Illinois Bicycle Path Grant Program (IBPGP)**

The IBPGP financially assists eligible units of government to acquire, construct, and rehabilitate public, non-motorized bicycle paths and directly related support facilities. Grants are administered by IDNR and are available to any local government agency having statutory authority to acquire and develop land for public bicycle path purposes.
Financial assistance up to 50 percent of approved project costs is available through the program. Revenue for the program comes from a percentage of vehicle title fees collected. Applications for grant assistance must be received by IDNR by March 1 of each calendar year.

Website: http://dnr.state.il.us/ocd/newbike2.htm

Illinois Department of Commerce and Economic Opportunity

9. **Tourism Attraction Development Grant Program (TAP)**

This program was created "to provide matching grants to assist in the development or improvement of projects that increase the economic impact of tourism throughout the State." TAP grants and loans are provided to counties, municipalities, not-for-profit and for-profit organizations and do not exceed 50 percent of the entire amount of the actual expenditures for the development or improvement.

U.S. Department of Housing and Urban Development

10. **Community Block Development Grant (CBDG)**

One of the longest-running programs of the U.S. Department of Housing and Urban Development (HUD), CBDG funds local community development activities such as affordable housing, anti-poverty programs, and infrastructure development. The CDBG program, like other block grant programs, differ from categorical grants made for specific purposes, in that they are subject to less federal oversight and are largely used at the discretion of the state and local governments and their subgrantees.

CDBG funds are allocated to more than 1,200 local and state governments on a formula basis. Larger cities and urban counties, called "entitlement communities," are required to prepare and submit a "Consolidated Plan" that establishes goals for the use of CDBG funds. Grantees are also required to hold public meetings to solicit input from the community, ensuring that proposed projects are aligned with the community's most urgent needs.

Website: http://portal.hud.gov/hudportal/HUD?src=/program_offices/comm_planning/communitydevelopment/programs

11. **Partnership for Sustainable Communities Grants**

The Sustainable Communities Planning Grant Program is being initiated in close coordination with the U.S. Department of Transportation (DOT) and the U.S. Environmental Protection Agency (EPA), co-leaders with HUD in the Partnership for Sustainable Communities.
The Partnership agencies will periodically offer funding opportunities and when these grants are offered, they will be announced online. In addition, each agency maintains websites to track their own grant announcements.

Website: http://www.sustainablecommunities.gov/grants.html
www.grants.gov

Other

12. **Motor Fuel Tax (MFT)**

The Illinois MFT Fund is derived from a tax on the privilege of operating motor vehicles upon public highways and of operating recreational watercraft upon the waters of this state, based on the consumption of motor fuel. The motor fuel taxes deposited in the Illinois MFT Fund are 19.0 cents per gallon on all gasoline with 2.5 cents per gallon on diesel fuel in. IDOT allocates these monies according to the MFT Fund Distribution statute and initiates the process for distribution of motor fuel tax to the counties, townships and municipalities. Implementing an additional municipal gas tax is a strategy many communities use to increase tax revenue, including Bloomington and Normal.

13. **Member Initiative Money**

State legislators have discretionary funds that can be used for projects of their choice. They can be powerful allies for pulling together and providing resources for projects that span municipalities.

The grant programs described in the preceding pages are summarized on the following Page 4.6.
Exhibit 33: Summary Table of Grant Opportunities

<table>
<thead>
<tr>
<th>Grant/Fund Name</th>
<th>Acronym</th>
<th>Administered by</th>
<th>Funding Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illinois Department of Transportation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Illinois Transportation Enhancement Program</td>
<td>ITEP</td>
<td>IDOT</td>
<td>IDOT</td>
</tr>
<tr>
<td>2. Surface Transportation Program</td>
<td>STP</td>
<td>MPO/IDOT</td>
<td>Federal</td>
</tr>
<tr>
<td>3. Congestion Mitigation and Air Quality Program</td>
<td>CMAQ</td>
<td>MPO</td>
<td>Federal</td>
</tr>
<tr>
<td>4. Safe Routes to School</td>
<td>SRTS</td>
<td>IDOT</td>
<td>Federal</td>
</tr>
<tr>
<td>5. Illinois Tomorrow Corridor Planning Grant Program</td>
<td></td>
<td>IDOT</td>
<td>State</td>
</tr>
<tr>
<td>Illinois Department of Natural Resources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Open Space Lands Acquisition & Development Program</td>
<td>OSLAD</td>
<td>IDNR</td>
<td>IDNR</td>
</tr>
<tr>
<td>7. Recreational Trails Program</td>
<td>RTP</td>
<td>IDNR</td>
<td>Federal</td>
</tr>
<tr>
<td>8. Bicycle Path Grant Program</td>
<td>IBPGP</td>
<td>IDNR</td>
<td>IDNR</td>
</tr>
<tr>
<td>Illinois Department of Commerce and Economic Opportunity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Tourism Attraction Development Grant Program</td>
<td>TAP Illinois</td>
<td>DECO</td>
<td>State</td>
</tr>
<tr>
<td>US Department of Housing and Urban Development</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Community Block Development Grant</td>
<td>CBDG</td>
<td>HUD</td>
<td>Federal</td>
</tr>
<tr>
<td>11. Partnership for Sustainable Communities (various grants)</td>
<td></td>
<td>EPA/HUD/DOT</td>
<td>Federal</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Motor Fuel Tax</td>
<td>MFT IDOT</td>
<td></td>
<td>State</td>
</tr>
<tr>
<td>13. Member Initiative Money</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ENGINEERING & CONSTRUCTION

For projects that are selected and identified for Federal funding, the design process follows a strict process of Preliminary Engineering, Final Engineering and then Construction and Construction Engineering; referred to in general terms as Phase I, Phase II and Phase III. If Federal funds are going to be used for construction (Phase III) then Phase I and Phase II have to be completed in accordance with the processes outlined in detail in the Bureau of Local Roads and Streets (BLRS) Manual (http://dot.state.il.us/blr/manuals/blrmanual.html).

Preliminary Engineering complexity varies widely depending on the scope and magnitude of the project being pursued and its potential environmental impacts in accordance with the National Environmental Policy Act of 1969. Phase I studies range from the most complex Environmental Impact Statement (EIS) to the simplest Categorical Exclusion Type I (CE-I) without a report (a single page document). The type of Phase I study or processing requirements is decided at a monthly coordination meetings held with representatives of IDOT BLRS, Bureau of Environment and Design (BDE) and the FHWA.

Regardless of the processing requirements, a key component of the Phase I process is getting local community input on projects. Much of this public input is received through the Context Sensitive Solution (CSS) process that was such a key part of this study. That attention to detail at the outset will undoubtedly serve the communities of Bloomington and Normal moving forward in the implementation and design process.

PRELIMINARY COST ESTIMATE

An order of magnitude cost estimate was prepared for the improvement alternatives outlined in Section 3 of this report. A per-unit price for each improvement option was determined and multiplied by the approximate length of each segment to come up with a total cost per improvement. The costs are not totaled since several options may be included for a segment which will not all be constructed. The table at the end of this section on Page 4.8 summarizes feasible improvement options and lists a preliminary cost estimate which is related to construction only and does not include engineering.
Exhibit 34: Preliminary Cost Estimates

<table>
<thead>
<tr>
<th>Segment No.</th>
<th>Description of Improvement</th>
<th>Comments</th>
<th>Preliminary Cost Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unit</td>
</tr>
<tr>
<td>Segment 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-39 to I-55</td>
<td>Landscaped median</td>
<td>Long-term consider future off-street path & intersection ped enhancements</td>
<td>2 miles</td>
</tr>
<tr>
<td>Segment 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-55 to College</td>
<td>Landscaped median</td>
<td></td>
<td>1.75 miles</td>
</tr>
<tr>
<td>Raab to College</td>
<td>Narrow travel lanes to 11’ & Stripe bike lanes OR widen parkway</td>
<td>Includes some structural adjustments</td>
<td>1.5 miles</td>
</tr>
<tr>
<td></td>
<td>Curb & gutter reconstruction</td>
<td></td>
<td>1.5 miles</td>
</tr>
<tr>
<td></td>
<td>Reduce & consolidate driveways</td>
<td>Consolidate, close, or relocate</td>
<td>2 ea.</td>
</tr>
<tr>
<td>Segment 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main/College</td>
<td>Traffic signal timing modifications Increase SB LT lane</td>
<td>In House 1 ea.</td>
<td>$100,000</td>
</tr>
<tr>
<td>Main/McKinley OR Summit</td>
<td>New traffic signal</td>
<td></td>
<td>1 ea.</td>
</tr>
<tr>
<td>Main (College-Division)</td>
<td>Narrow travel lanes to 11’ & Stripe bike lanes OR widen parkway</td>
<td>Includes some structural adjustments</td>
<td>1.1 miles</td>
</tr>
<tr>
<td>Main (Division-Locust)</td>
<td>Remove one NB travel lane, narrow travel lanes to 11’, retain parking & Stripe buffered bike lane OR widen parkway/sidewalk</td>
<td>Includes some structural adjustments</td>
<td>.8 mile</td>
</tr>
<tr>
<td></td>
<td>Curb & gutter reconstruction</td>
<td></td>
<td>.8 miles</td>
</tr>
</tbody>
</table>
Exhibit 34 (con’t.): Preliminary Cost Estimates

<table>
<thead>
<tr>
<th>Segment No.</th>
<th>Description of Improvement</th>
<th>Comments</th>
<th>Unit</th>
<th>Approximate Unit Cost</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kingsley/Center</td>
<td>Narrow travel lanes to 11’ & Stripe bike lane OR widen parkway</td>
<td>Includes some structural adjustments</td>
<td>1.9 miles</td>
<td>$300,000</td>
<td>$627,000</td>
</tr>
<tr>
<td></td>
<td>Curb & gutter reconstruction</td>
<td></td>
<td>1.9 miles</td>
<td>$300,000</td>
<td>$627,000</td>
</tr>
<tr>
<td></td>
<td>Fill in sidewalk gaps</td>
<td></td>
<td>.15 mile</td>
<td>$200,000</td>
<td>$30,000</td>
</tr>
<tr>
<td>Segment 4</td>
<td></td>
<td>Include traffic signal modifications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locust Street</td>
<td>Convert to two-way operations Lee-Main to create truck route (2 EB lanes & 1 WB lane)</td>
<td></td>
<td>.25 miles</td>
<td>$1,000,000</td>
<td>250,000</td>
</tr>
<tr>
<td></td>
<td>Place IL 9/US 150 designation along Locust instead of Lee</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acquire ROW NWQ Locust/Center & turn lane improvements</td>
<td>1 ea.</td>
<td>TBD</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Center & Main</td>
<td>Convert to two-way operations</td>
<td></td>
<td>.35 miles</td>
<td>$300,000</td>
<td>$105,000</td>
</tr>
<tr>
<td></td>
<td>Roadway extension to intersect Madison & East</td>
<td></td>
<td>.1 mile (300’)</td>
<td>$1,500,000</td>
<td>$150,000</td>
</tr>
<tr>
<td></td>
<td>Traffic signal modifications</td>
<td></td>
<td>6 ea.</td>
<td>$150,000</td>
<td>$900,000</td>
</tr>
<tr>
<td></td>
<td>Curb bump-outs, extend streetscape to Center</td>
<td></td>
<td>12 int.</td>
<td>TBD</td>
<td>--</td>
</tr>
<tr>
<td>Madison & East</td>
<td>Reduce to 3 lanes & narrow travel lanes to 11’ & Stripe buffered bike lane OR widen parkway/sidewalk</td>
<td>Includes traffic signal modification</td>
<td>2x .5 mile</td>
<td>$1,500,000</td>
<td>$1,500,000</td>
</tr>
</tbody>
</table>
Exhibit 34 (con’t.): Preliminary Cost Estimates

<table>
<thead>
<tr>
<th>Segment No.</th>
<th>Description of Improvement</th>
<th>Comments</th>
<th>Preliminary Cost Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Unit</td>
<td>Approximate Unit Cost</td>
</tr>
<tr>
<td>Segment 5</td>
<td></td>
<td>1 mile</td>
<td>$300,000</td>
</tr>
<tr>
<td>Main (Oakland-RT Dunn)</td>
<td>Maintain 3 NB lanes & narrow travel lanes to 11’ & Stripe bike lane OR widen parkway/sidewalk</td>
<td>Some structural adjustments needed</td>
<td></td>
</tr>
<tr>
<td>Main (Lafayette-Brigham School)</td>
<td>Construct 10’ off-street path</td>
<td>1.5 miles</td>
<td>$1,000,000</td>
</tr>
<tr>
<td></td>
<td>Reduce & consolidate driveways</td>
<td>5 ea.</td>
<td>$50,000</td>
</tr>
<tr>
<td>Main (RT Dunn-Brigham School)</td>
<td>Landscaped median</td>
<td>1.5 miles</td>
<td>$400,000</td>
</tr>
</tbody>
</table>